Beyond Subaru 2

- we should start thinking about beyond Subaru 2 (Subaru 3) sooner than later
- "Subaru 2" (HSC+PFS+ULTIMATE-Subaru, 2022-2031) was actually bottom-up
- what about Subaru 3 (2032-)?
 Also bottom-up favored (?)

2024/1/25 Subaru UM FY2023@NAOJ

https://subarutelescope.org/en/subaru2/ https://subarutelescope.org/jp/subaru2/

Subaru Telescope 2.0 A New Era of the Subaru Telescope –

Some activities so far

- kick-off meeting in 2021 (voluntary)
 - various ideas/topics discussed
 - new instruments for exoplanets
 - instruments for multi-messenger astronomy
 - Gais follow-up
 - HSC/PFS upgrades
- talk by Takada-san in 2023 GOPIRA meeting
 - suggestion of having more discussions
 - apply for grants?
- not much beyond...

Comments

- comments from several people working on instruments
 - Kawahara-san
 - Kotani-san
 - Komiyama-san
 - Utsumi-san

Wide-Field High Speed Astronomy with Large-Format CMOS Sensors

Y. Komiyama (Hosei), S. Miyazaki, S. Kawanomoto, Y. Kamata (NAOJ), M. Oguri (Chiba), Y. Fujita (Tokyo Metro)

Development of Large Format CMOS Sensor

- Collaborative Development by NAOJ and Hamamatsu
- **Back illuminated**
- 2,560 x 10,000 pixels
- 7.5 μm square pixel
- 3-side buttable
- Full well ~ 30,000 e
- Readout noise ~ 2 e
- Dark: 90 e/s/pix @ 300 K
- Readout speed: 10 Hz
- (partial readout \rightarrow 1000Hz)

Covers wide focal plane with minimum gaps between sensors (Design philosophy taken from Subaru prime focus cameras)

 \rightarrow Wide-Field High Speed Astronomy

Development in progress (slowly) by (old) HSC builders

■ 分光感度特性(代表例)

Wide-Field High Speed Astronomy

- Fast radio burst, Gamma-ray burst
- Pulsar, Black Hole binary, Flare stars
- Solar system small bodies
 - Near-Earth Objects
 - Impact on Moon/Planet surface
 - Eclipse by Kuiper Belt/Oort Cloud objects
- Lucky Imaging

• Unknown high speed variable

Various science cases are possible by 1 instrument

New astronomical phenomena can be observed

	Tomo-e Gozen	TAOS II	Subaru CMOS	Coadded all imag	^{ges} α-Gem
Tel. Aperture	1.05 m	1.3 m	8.2 m		
Field of View	20 deg ²	2.3 deg ²	0.25 deg ²		
Frame Rate	2 sec ⁻¹ (20 for part)	20 sec ⁻¹	10 sec ⁻¹	d images data)	
Limiting Mag.	~17 mag	~18 mag	~21 mag	eeing	
Sensor Format	2000x1128 (19um/pix)	1920x4608 (16um/pix)	2560x10000 (7.5um/pix)	Coadded selected images (better seeing data)	
# of Sensors	84	10	12	S	
Vendor	Canon	e2v	Hamamatsu		~ 6
Site	Kiso	Mexico	Maunakea		

Current Status

Test Observation at Kanata Telescope (2019 Sep + 2020 Mar) 1 sensor: Fundamental data were obtained

Development of Sensor/Readout Electronics (FY 2022) SPMU002: High-speed readout + data transfer by 10GbE

Screening of CMOS sensors

Development of Camera with multiple sensors (FY2023)

Chance to observe at Arizona Univ. Telescope Focal Plane Layout of CMOS sensors Dewar Design, I/F Design Electronics Design (Distribution board, etc) Graduation Research by B4 students : Screening of CMOS sensors, Heat exhaust design of readout electronics

For the test observation (FY2024) Dewar Assembly, install 6 CMOS sensors Preparation for the observation

Heat Exhaust Test

SPMU02

Development for Arizona 90inch Telescope

- Development of 6 sensor camera
 - Focal plane : 126.5mmx75mm
 → 1.06 x 0.63 deg^2 (0.23 arcsec/pix)
 - Readout by 6 set of SPMU002
 - Synchronized readout

For Subaru Prime Focus

<u>Taken over HSC ?</u>

Sensor: 3-side buttable \rightarrow 4-side buttable ~100 sensors can cover HSC's FoV (if sensors are available)

Heritage of HSC development

Challenges: Enormous data Transfer/Analysis/Archive...

Wide field imaging survey - Utsumi

• Subaru is great because of not only the **aperture size** but also **"image quality"**: $\sqrt{Qt/R_{skv}}$

 \overline{N}

- HSC "2"
 - Ultra wide with shorter exposures
 - Enabling HSC's fast readout 18s->10s (Nakaya et al., 2012)
 - read noise (12e-; Kamata et al., 2012), X talk, thermal performance need to be investigated
 - off loading fits writing 12s -> ~0s?
 - ~50?% gain for 30sec exposure
 - Narrow band survey (e.g. PAU, LSST"2"?)
 - Maximize the unique performance of low noise

57deg²/half a night with a mode depth of **25th** by 2x30sec exposure (Ohgami et al.; 2023)

Discussions

- more ideas?
- how to proceed?
 - meeting?
 - grant?
 - bottom-up or top-down?