Status updates of IRD-SSP

Bun'ei Sato (Titech), on behalf of the IRD-SSP team

IRD-SSP (original) science goals

- 1. Search for Earth-mass planets in the habitable zone (HZ)
- 2. Uncover the distribution of planets (from terrestrial planets to giant planets) both within and beyond the snowline
- 3. Provide limit to the migration mechanism of small planets and planetary evolution theory

Re-defined science objectives in response to review comments and suggestions from the SSP interim review in 2022, by considering the latest planetary formation models

Redefinition of science goals

• Minimum Success

- Detection of >1 terrestrial planets (m sini = 1 -10 M_{Earth})
- Limit on the distribution of giant planets (> a few 10 MEarth), located up to ~0.1 a.u. for >40 stars that can be compared to the result of gravitational microlensing planet.
- Provide an upper limit on the frequency of HZ planets, >3 MEarth
- Full Success:
 - Discover at least one HZ planet with m sini = 1-10 M_{Earth}
 - Limit the distribution of short-period (orbital period < 10 days), planets >3 $M_{\rm Earth}$
 - Limit the frequency of existence of low-mass planets (>3 MEarth), including HZ planets
- Extra Success:
 - Discovery of one or more HZ planets of about Earth mass (m sini= 1-3 M_{Earth})
 - Obtain frequency of existence for terrestrial planets (>1 MEarth), including Earth-mass HZ planets
 - Discover Earth-like planets that can be followed up (transit photometry) to understand the atmospheres and internal compositions (e.g. mass-radius relationship)

Observation progress

- A total of 175 nights allocated for S19A~S23B period
- 149.5 nights were used for IRD-SSP by January 2024
- Success rate is particularly not good in November – February
- 25.5 nights lost due to troubles (telescope, detector, COVID-19) need to be compensated in S24A or later (7 nights in S24A and 7 nights in S24B are already approved) in order to ensure the minimum success.

	Number of night
Allocated night(S23B)	175.0
Number of nights used for IRD-SSP	149.5
Number of nights that need to be compensated	25.5
Telescope trouble, COVID-19	19.5
Detector trouble in 2020/1~2	6.0
Number of nights to be compensated in S24A	7.0
Number of nights needs to be compensated in S24B or later	18.5

Publications

- 1. "A Super-Earth Orbiting Near the Inner Edge of the Habitable Zone around the M4.5-dwarf Ross 508", Harakawa et al. 2022, PASJ, 74, 904
- 2. "Elemental Abundances of nearby M Dwarfs Based on High-resolution Nearinfrared Spectra Obtained by the Subaru/IRD Survey: Proof of Concept", Ishikawa et al. 2022, AJ, 163, 72
- 3. "An Earth-sized Planet around an M5 Dwarf Star at 22 pc", Hirano et al. 2023, AJ, 165, 131
- 4. "Direct Imaging Explorations for Companions around Mid-Late M Stars from the Subaru/IRD Strategic Program", Uyama et al. 2023, AJ, 165, 162
- 5. "Planetary companions orbiting the M dwarfs GJ 724 and GJ 3988: A CARMENES and IRD collaboration", Gorrini et al. 2023, A&A, 680, 28
- 6. A paper on the discovery of "a nearby temperate Earth-sized planet ideal for JWST spectroscopy" from IRD-SSP, TESS, and MuSCAT2&3 collaboration is now under review

Several more papers are in preparation.

Direct imaging explorations for companions around Mid-Late M stars

- Binarity study of IRD-SSP sample by Keck/NIRC2 and IRD/FIM
- "Deprioritized" IRD-SSP targets that have signatures of long-term RV trends and/or large RUWE values from the Gaia catalog suggesting unresolved systems
- Detected 7, including 4 new, companions at projected separations between ~ 2 – 20 au from the target stars
- Non-detection makes the objects promising targets for further RV monitoring

Uyama et al. 2023, AJ, 165, 162

Collaboration with CARMENES

- New collaboration with the CARMENES team from 2022/09 to maximize science output of IRD-SSP
 - CARMENES project: visible & NIR RV survey of M-dwarfs started in 2016 (750-night exoplanet survey targeting ~300 M dwarfs)
 - Sharing a target list and RV data, coordinated observations, data reduction, activity analysis, etc.

A planet orbiting the M dwarf GJ 3988 (M4.5V, 0.18M_{sun}): A CARMENES and IRD collaboration

Gorrini et al. 2023, A&A, 680, A28

The 3rd terrestrial planet from IRD-SSP

Parameter (a)	GJ 724	GJ 3988	
Planetary posteriors			
$P_{\rm b}$ (d)	$5.101284^{+0.000090}_{-0.000077}$	$6.9442^{+0.0010}_{-0.0010}$	
$t_{0,b}$ (BJD)	$2457509.766^{+0.050}_{-0.049}$	$2457509.78^{+0.26}_{-0.25}$	
$K_{\rm b} \ ({\rm m \ s^{-1}})$	7.48 ^{+0.90} -0.67	3.83 ^{+0.37} _{-0.37}	
$\sqrt{e_{\rm b}}\cos\omega_{\rm b}$	$0.635^{+0.050}_{-0.055}$	0 (fixed)	
$\sqrt{e_{\rm b}}\sin\omega_{\rm b}$	$0.416^{+0.060}_{-0.065}$	0 (fixed)	
Derived parameters ^(b)			
$M_{\rm b} \sin i (M_{\oplus})$	$10.75^{+0.96}_{-0.87}$	$3.69^{+0.42}_{-0.41}$	
$a_{\rm b}$ (au)	$0.04685^{+0.00077}_{-0.00079}$	$0.0405^{+0.0011}_{-0.0012}$	
$e_{\rm b}$	$0.577^{+0.055}_{-0.052}$	0 (fixed)	
$\omega_{\rm b}$ (deg)	$33.2^{+5.7}_{-5.5}$	0 (fixed)	
$< S_{\rm b} (S_{\oplus}) >$	$23.32^{+0.82}_{-0.77}$	$2.45_{-0.13}^{+0.15}$	
$< T_{eq, b} (c) (K) >$	611^{+20}_{-19}	348+17	
$T_{\rm eq, b} {}^{(d)} ({\rm K})$	643^{+30}_{-26}	349^{+19}_{-17}	
GP posteriors			
$P_{\text{GP, rv}}$ (d)	$29.50^{+0.88}_{-1.46}$	$115.28^{+3.24}_{-3.06}$	
$\sigma_{\rm GP, rv, CARM-VIS} ({ m m s^{-1}})$	$3.09^{+1.14}_{-0.72}$	$3.30^{+1.20}_{-0.85}$	
$\sigma_{\rm GP, rv, HARPS} ({ m m s^{-1}})$	$3.00^{+1.17}_{-0.86}$		
$\sigma_{\rm GP, rv, IRD} ({ m m s^{-1}})$		$4.36^{+2.20}_{-1.50}$	
$f_{ m GP,rv}$	$0.70^{+0.21}_{-0.31}$	$0.65^{+0.24}_{-0.31}$	
$Q_{0,\mathrm{GP,rv}}$	$5.4^{+15.4}_{-4.5}$	$0.46^{+1.10}_{-0.29}$	
$dQ_{ m GP,rv}$	23^{+3193}_{-23}	561.36 ^{+19.571.86} -560.55	
Instrumental posteriors			
$\gamma_{\text{CARM-VIS}} \text{ (m s}^{-1}\text{)}$	$0.79^{+0.40}_{-0.43}$	$0.30^{+0.61}_{-0.59}$	
$\sigma_{\text{CARM-VIS}} \text{ (m s}^{-1})$	$1.18^{+0.67}_{-0.69}$	$1.27^{+0.49}_{-0.50}$	
$\gamma_{\rm HARPS}~({\rm ms^{-1}})$	$-0.80^{+0.66}_{-0.63}$		
$\sigma_{ m HARPS} ({ m ms^{-1}})$	$0.65^{+0.70}_{-0.45}$		
$\gamma_{\rm IRD} \ ({\rm m}{\rm s}^{-1})$		$-0.12^{+1.04}_{-1.50}$	
$\sigma_{\rm IRD} ({\rm ms^{-1}})$		$3.17^{+0.77}_{-0.72}$	