Introduction to HiZ-GUNDAM mission: Cooperative Observations with Subaru in 2030s

<u>Kohji Tsumura (Tokyo City Univ., TCU)</u> Hideo Matsuhara, Akihiro Doi(ISAS/JAXA), Daisuke Yonetoku (Kanazawa U.), and HiZ-GUNDAM collaboration

HiZ-GUNDAM (High-z Gamma-ray bursts for Unraveling the Dark Ages Mission)

Main themes :

"Exploration of the early universe" & "Multi-messenger astronomy"

- Detection of high-redshift GRBs (9 < z < 12)
- Probing the reionization history and first metal elements

Mission 2: Multi-messenger astronomy

- + Localization of X-ray transient associated with GW and Neutrino
- Energy transition from jet cocoon kilonova

Observation Strategy

- (1) Discovery of GRBs or X-ray transients by the Wide-field X-ray monitor (WFXM)
- (2) Satellite attitude change by autonomous control
- (3) Identification of GRBs or kilonovae by the Near-infrared telescope (NIRT)
- (4) Transmission of alerts including location and photo-z.
- (5) Spectroscopic follow-up observations with large telescopes.

Wide-field X-ray monitor

Launch:

~2030

- Lobster-eye optics
- pnCCD

Near-infrared telescope

- Off-axis 30-cm telescope
- 5-band simultaneous observation

Problems in conventional GRB follow-ups

1. Detection of GRBs by a satellite, alerting it to the ground

↓ ~1 hour

2. Afterglow observation with small (30 cm - 1 m) telescopes

↓ a few hours – 1 day

- 3. Identify the redshift with medium size (2-4 m) telescopes $\mathbf{I} \sim 1 \text{ day}$
- 4. Spectroscopic observation of high-z GRBs with large (>8 m) telescopes

GRB afterglow has faded by the time the large telescopes observe. In the 18 years of SWIFT, there have been only two GRBs with z>6. Moreover, statistical accuracy of these spectra is low…

Our goal with HiZ-GUNDAM

1. Detection of GRBs by a satellite, alerting it to the ground

- Afterglow observation with small (30 cm 1 m) telescopes
 A few ho
- 3. Identify the redshift with medium size (2-4 m) telescopes

↓ ~1 day
Within a half-hour

4. Spectroscopic observation of high-z GRBs with large (>8 m) telescopes

Accelerates the process from GRB discovery to follow-up observations with large telescopes. Almost no high redshift GRBs are missed because redshifts are measured for all GRBs discovered by HiZ-GUNDAM.

Wide Field X-ray Monitor (WFXM)

Lobster Eye Optics (Micro Pore Optics)

Digital Electronics Board for pnCCD

Image performance with X-ray beamline

(Left) Digital Electronics Board (BBM) for pnCCD (Right) Focal Image Obtained at 30m X-ray beamline

Wavelength bands and redshift

- >2-band detections on the long wavelength side are required to distinguish the high-z objects from dusty galaxies.
- Photo-z can be determined with good accuracy at z < 13.0
- Object at z < 19.6 can be detected in principle.

Project Status and Planed Master Schedule

- Mission concept was selected in 2018 as the Competitive M-class Mission of ISAS/JAXA.
- Now in the pre-Phase A study in ISAS/JAXA.

Fiscal Year	Plans and Milestones			
FY2023	Concept Study, Down Selection Review (2023.4-5) Down Selection Review (Re-examination, 2024.3)			
FY2024	Development of BBM, Mission Definition Review, Estimated Budget Requirements			
FY2025	Establishment of Pre-Project Team			
FY2026	Establishment of Project Team			
FY2026 – 2027	EM Phase			
FY2028 – 2030	FM Phase, Launch in 2030			

- Down selection review was held in April-May 2023;
 - The ISAS Executives recommended that the mission scope be "to produce Key Science results through coordinated observations with space and ground-based telescopes that have been alerted from HiZ-GUNDAM".

Follow-up team is being constructed

HiZ-GUNDAM plays the role of "commander",

and promotes GRB observations with the world's large telescopes.

Requirement for follow-up spectroscopy at NIR

Expected Lightcurve for GRBs @ z = 7

Expected light curve when the GRB is placed at z=7 for a GRB with a known distance.

If follow-up observations can be carried out within 1 hour after discovery, the expected brightness is brighter than 21 mag (in >90% probability)

 \sim 10 GRBs at z>6 is expected (depending on the model)

8-m class telescope with 1-2 hours follow-up latency is required

Candidates of spectrometer on 8m-class telescope

- Simultaneous spectroscopy of wide NIR bands (J,H,K) is important
- Subaru
 - NINJA: J, H (+ K) Simultaneous spectroscopy, 21.5 22.0 mag (6 hours, S/N = 10). The only spectrometer that can use LTAO.
 - PFS: Not suitable for spectroscopy of a single object.

It takes >9 hours after receiving the alert to start the observation.

- Keck/NIRES, VLT/X-shooter, Gemini/SCORPIO(2024~) are also candidates, but Subaru/NINJA has better sensitivity (0.5-1.0 mag) thanks to LTAO.
- Keck/MOSFIRE, Gemini/GNIRS are less efficient because multiple observations are required to cover a wide NIR range.

Subaru/NINJA is the best solution !

Comparison of spectrometers on 8m-class telescope

Simultaneous spectroscopy of wide NIR bands (J,H,K) is important

	Wavelength coverage	Resolution $R = R/\Delta R$	Multiplicity	Notes
Subaru/PFS	Optical + J-band simultaneous	2000 (blue) 3000 (red) 4000 (NIR)	2394 fibers	
Subaru/NINJA	Optical to J, H (+K)-band simultaneous	5000	Single object	LTAO => 0.5-1.0 mag deeper than X-shooter
Keck/NIRES	Y, J, H, K simultaneous	2900	Single object	
VLT/X-shooter	Optical to J, H, and K-band simultaneous	5000	Single object	

Topics to be discussed

- How can we achieve ToO follow-up observations within an hour from receiving an alert with Subaru telescope in 2030s?
 - Consideration of a scheme for ToO triggering by users when a GRB that meets predefined conditions occurs.
- Preparing a letter from Subaru to ISAS/JAXA stating that GRB science has high value.
 - JAXA is requesting such a letter for re-examination in 2024 March.
 - The content can be a summary of objective facts, such as the past results of GRB follow-up observations by Subaru, in order to demonstrate the follow-up power of Subaru.
 - SAC will show a draft of the letter, and we would like the Subaru user's community to discuss whether this letter is acceptable.