

Gemini Observatory Update

Subaru Users' Meeting, 2024jan23-25

Atsuko Nitta & Andy Adamson

Gemini Observatory/NSF's NOIRLab

- I. Statistics
- 2. Gemini North M1 accident, Cyber security breach
- 3. Instrumentation news
- 4. Science highlights

Jennifer Lotz Director of the Space Telescope Science Institute Scott Dahm Gemini Interim Director Andreas Seifahrt Associate Director of Development **Elena Sabbi** Gemini Chief Scientist Leinani Lozi Hawai'i Education & Engagement Manager

PÁTRIA AMADA BRASIL

Statistics

COMICY Control Control

Proposal Routes

Spring (A) & Fall (B) Semester: Regular programs (NTAC, ITAC)
 BI-ANNUAL; queue, classical, ToO, priority visitor eavesdropping

Large & Long Programs: Large allocation and/or multi semester (LLP TAC)
 ANNUAL; queue, ToO, and priority visitor, eavesdropping

Fast-Turnaround: Immediate, short and/or follow up (Peer review)
 MONTHLY; queue, ToO

Director's Discretionary: Special opportunities (DD TAC team - Chief Scientist)

Open call (worldwide); queue, ToO

Poor Weather Programs: Bright targets and guide stars (Head of SciOps)

• Open call (Gemini community); queue

Note - we enable DARP, by Partner choice

Regular Queue Demand

Gemini North 2023B Oversubscription

Large/Long Demand

Notes 2021 - offered Band 2 only 2022 - no call

Publications

- Over 20 years, thesis projects have increased to **130 per semester**
- The number of Gemini publications continues to grow!
- Fast Turnaround (FT), Large & Long Program (LP) publications are increasing in number.
- Decline in FT publications during 2023 linked to the telescope shutdowns.

Exchange Publications

Subaru exchange time on Gemini produced 9 (7 by Subaru community, 2 by Gemini community) papers in 2023. 38 Gemini papers have Subaru community as part of the author list! (The figures have not been updated for 2023 yet.)

Gemini North M1

Damage to GN M1

M1 Lifting Fixture

Lateral support attachment pad

Corning ULE mirror substrate

Points of Impact

On 20 October 2022, while moving the primary mirror in preparation for stripping, the mirror contacted an earthquake restraint on the facility's wash cart, chipping the edge at two points. No-one was injured.

Multiple contributing factors culminated in human error via a radio communication mishap.

Lessons learned \rightarrow Both, GN M1 and GS M1, successfully recoated.

Back with a Bang! 2023jun02 GN back onsky!

Processing: J. Miller, M. Rodriguez, M. Zamani, T.A. Rector & D. de Martin

- Band1 persistent programs. Moved observations to GS if possible.
- Safran-Reosc (France) successfully completed the glass repair which followed recoating.
- Periodic monitoring of actuator loading and out-of-focus images.

M101 SN observed using DD time lead by JenL+GN scistaff

2023aug01 :Cyber Attack

2AM in Hawai'i / 7AM in Chile

- Gemini North servers begin shutting down
- Chile IT team detects suspicious activity
 > Network disconnected within 40 minutes of detection

No Data Lost Gemini N&S, CTIO telescopes taken off-line Subsequent partial downtime necessary to rebuild the network

- Band1 programs (nonToO, facility instrument) persistent into 24A.
- Transfer observations from GN to GS.

Some lessons...

- **Be Prepared have a plan, follow your plan :** Our cyber incident response plan was our roadmap to recovery
- Stay up to date with NSF's Trusted CI and other sources
- Carry cyber insurance : If you need to use the insurance, it will pay for itself
- **Don't rush to get back on line :** Security is critical: the hackers are likely monitoring
- Implement Multi-Factor Authorization everywhere!
- Learn from others and share what you can*: We have connected with other observatories' IT teams
- Communicate with stakeholders frequently: NSF and Gemini Board. CTIO telescope teams and other stakeholders
- DON'T THINK THAT THIS WON'T HAPPEN TO YOU; BE PREPARED

*Consult your legal team!

COMOT STREET

Instrumentation

Current and Future Gemini Instruments

2023: GHOST, GNIRS IFUs 2024: IGRINS2 2025: SCORPIO, GPI-2 2028: GNAO + GIRMOS

GHOST

High-resolution optical spectrograph to study chemical composition of stars, distant quasars, and exoplanet systems.

λ = 0. 36 - 0.95 μm R >50,000 (standard, 2 targets) >75,000 (high-res, 1 target) S/N~30 at 17mag in 1hr

Weibnar:----

https://noillab.edu/science/videos?comb ine=ghost23

 Publications: Hayes et al. 2023, Placco et al. 2023, Sestito et al. 2023, Dovgal et al. 2024 and others....

Offered in regular call starting 24A.

THE ASTROPHYSICAL JOURNAL, 955:17 (17pp), 2023 September 20 © 2023. The Author(s). Published by the American Astronomical Society. OPENACCESS

https://doi.org/10.3847/1538-4357/acebc0

GHOST Commissioning Science Results: Identifying a New Chemically Peculiar Star in Reticulum II

Christian R. Hayes¹, Kim A. Venn², Fletcher Waller², Jaclyn Jensen², Alan W. McConnachie^{1,2}, John Pazder^{1,2}, Federico Sestito², André Anthony¹, Gabriella Baker³, John Bassett⁴, Joao Bento⁵, Trystyn Berg^{6,7}, Gregory Burley¹, Jurek Brzeski³, Scott Case³, Edward Chapin¹, Timothy Chin³, Eric Chisholm¹, Vladimir Churilov³, Adam Densmore¹, Ruben Diaz⁴, Scott Case³, Edward Chapin¹, Timothy Chin³, Eric Chisholm¹, Vladimir Churilov³, Adam Densmore¹, Ruben Diaz⁴, Colin Ganton¹, Manuel Gomez-Jimenez⁴, Tim Hardy¹, David Henderson⁹, Alexis Hill¹, Brian Hoff¹, Michael Ireland^{3,5}, Venu Kalari⁴, Neal Kelly¹, Urs Klauser³, Yuriy Kondrat³, Kathleen Labrie⁹, Sam Lambert¹, Lance Luvaul⁵, Jon Lawrence³, Jordan Lothrop¹, G. Scott Macdonald¹, Slavko Mali³, Steve Margheim¹⁰, Richard McDermid³, Helen McGregor³, Bryan Miller⁴, Felipe Miranda¹, Rolf Muller³, Jon Nielsen⁵, Ryan Norbury¹, Oliver Oberdorf⁹, Naveen Pai³, Gabriel Perez⁴, Pablo Prado⁴, Ian Price⁵, Carlos Quiroz⁴, Vladimir Reshetov¹, Gordon Robertson³, Roque Ruiz-Carmona⁴, Ricardo Salinas⁴, Kim M. Sebo⁵, Andrew Sheinis¹¹, Matthew Shetrone¹², Keith Shortridge³, Katherine Silversides¹, Karleyne Silva⁴, Chris Simpson⁹, Greg Smith³, Kei Szeto¹, Julia Tims³, Eduardo Toro⁴, Cristian Urrutia⁴, Sudharshan Venkatesan³, Lewis Waller³, Ivan Wevers¹, Ramunas Wierzbicki¹, Marc White⁵, Peter Young⁵, and Ross Zhelem³

- GHOST now provides a high dispersion spectroscopic capability for the community
- GHOST is working as expected.
- Demand in 2024A was high!
- First results are now in press.

GNIRS's new IFUs

Instrument/mode	NIFS	GNIRS LR IFU	GNIR HR/AO IFU
Spatial Sampling	0.103" x 0.043"	0.15" x 0.15"	0.05" x 0.05"
Field of View	3" x 3"	3.2" x 4.8"	1.25" x 1.8"
Number of Spatial Elements (Slices x detector pixels)	2000	672 (21x32)	900 (25x36)
Resolving Power	< 4,500	< 7,200	< 19,000
Spectral Range (µm)	0.94-2.4	1.0-5.0	1.0-5.0

GNIRS upgrade with 2 integral field units for galaxy evolution, star-formation

Built by Durham University, LS IFU installed in 2022 and HR IFU in 2023. Onsky commissioning tasks completed. Working on data reduction packages.

Waiting for the final documentation and release of data reduction tool (delayed due to cyber attack).

L/M-band resolution near diffraction limit (barely) beats JWST resolution

IGRINS-2 (Immersion GRating INfrared Spectrograph-2)

High resolution infrared spectrograph for interstellar medium, young stellar objects, exoplanets, and Galactic evolution studies.

R=45K, simultaneous coverage of H+K coverage

Built and funded by KASI, based on IGRINS visiting instrument.

Delivered to Gemini-North and first light in Oct, 2023. Two commissioning runs completed. Third one scheduled in April. Systems Verification run in July, 2024.

PI 2.0 Integral Field Spectrograph and CAL 2.0 design view.

Gemini Planet Imager 2.0 (GPI-2)

The Gemini Planet Imager is an **extreme adaptive-optics imaging polarimeter/integral-field spectrometer, to study exoplanets, brown dwarfs and dust around stars.**

GPI is being upgraded by Notre Dame, UC San Diego and HAA to improve contrast ratio and sensitivity; funded by NSF, Heising-Simons, NRC

GPI-2.0 to arrive to Gemini-North in 2025.

- Installation and alignment of the integral field spectrograph is on-going at the University of Notre Dame
- The team at the University of California San Diego is working on the AO bench
- Herzberg Astronomy & Astrophysics Research Center (HAA) will deliver the CAL 2.0 upgrade

Work-horse capability for time-domain science

Simultaneous 8-band optical/near-infrared imager and spectrograph built by SwRI, FRACTAL, JHU, STScl.

 $\lambda = 0.38 - 2.3 \mu m grizYJHK 3'x3' imaging$ or R~4000, 3' long slit

Rapid target acquisition and readout Currently in the integration phase at FRACTAL

Delivery scheduled in 2025 to GS

GNAO + GIRMOS

- Gemini North Adaptive Optics (GNAO)
 - Replaces our current AO system, ALTAIR
 - \circ Two AO modes
 - Narrow-field (20"x20")
 - Wide-field (2'x2')
- Gemini Infrared Multi-Object Spectrograph (GIRMOS)
 - 4 IFUs + imaging capability
 - Resolution: 3,000 and 8,000
- Science cases: high-redshift galaxies, galaxy mergers & star formation
- GIRMOS will arrive in 2027, and GNAO will be ready in 2028

Science Highlights

Subaru community using Gemini and vice versa.

- 38 papers w/ Subaru astronomers on papers using Gemini data
- 1 paper from Gemini community using Subaru data.
- Example : "Transition Probabilities of Near-infrared Ce III Lines from Stellar Spectra: Applications to Kilonova" by Domoto et al., 2023, ApJ, 956, 113
 [Domoto san gave a talk on day1!]
- Example : "Deciphering the unusual stellar progenitor of GRB 210704A" byBecerra, R.L. et al., 202, MNRAS, 522, 5204

THE ASTROPHYSICAL JOURNAL, 956:113 (11pp), 2023 October 20
© 2023. The Author(s). Published by the American Astronomical Society.
OPEN ACCESS

https://doi.org/10.3847/1538-4357/acf65a

CrossMark

Transition Probabilities of Near-infrared Ce III Lines from Stellar Spectra: Applications to Kilonovae

Nanae Domoto¹, Jae-Joon Lee², Masaomi Tanaka^{1,3}, Ho-Gyu Lee^{2,4}, Kako Aoki^{5,6}, Miho N. Ishigaki⁵, Shinya Wanajo^{7,8}, Daiji Kato^{9,10}, and Kenta Hotokezaka^{11,12}, ¹Astronomical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan; n.domoto@astr.tohoku.ac.jp
 ¹Astronomical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan; n.domoto@astr.tohoku.ac.jp
 ²Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055, Republic of Korea
 ³Division for the Establishment of Frontier Sciences, Organization for Advanced Studies, Tohoku University, Sendai 980-8577, Japan
 ⁴Space Policy Research Center, Science and Technology Policy Institute, 370 Sicheong-daero, Sejong 30147, Republic of Korea
 ⁵National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
 ⁶Astronomical Science Program, The Graduate University for Advanced Studies, SOKENDA1, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
 ⁷Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
 ⁸Interdisciplinary Theoretical and Mathematical Sciences Program (THEMS), RIKEN, Wako, Saitama 351-0198, Japan
 ⁹National Institute for Fusion Science, 322-6 Oroshi-ch, Toki 509-5292, Japan
 ¹⁰Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
 ¹¹Research Center for the Early Universe, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
 ¹²Kavii IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
 ¹²Kavii IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

Figure 3. False-colour image of the field of GRB 210704A as seen by HST: red is F160W, green is F105W, and blue is F606W. The white box in the bottom right marks the position of GRB 210704A. The bright spiral galaxy G1 is marked in the top right. Side panels show a zoom of the field in different filters to compare the afterglow images obtained at 6.5 and 10.4 d with the late-time HST imaging obtained months after the explosion. The crosshair in the top panels marks the optical/infrared transient position, and the arrows mark the location of the sources S1 and S2, respectively. The orientation is such that North is up and East is to left.

Analysis of GRB 210704A 5209

And ...

COMPANY Control of Con

Strategic Plan for Gemini in the 2030s

Strategic Scientific Plan for Gemini Observatory

July 2, 2019

Prepared by: Gemini Observatory Approved by the Gemini Board of Directors at their May 2019 meeting.

NRC CNRC

- Initiating the Gemini Strategic Scientific Plan for the 2030s.
- Community survey is open from 02 January–15 February 2024.
- Soliciting feedback on complementary science, new Gemini instrumentation and infrastructure development.
- Results will be reviewed and discussed in workshops to be organized in the coming year.
- The new Strategic Scientific Plan will be presented at the 2025 Gemini Science Meeting.

NOIRLab/Gemini Sustainability Projects - Summary

In 5yr plan and funded:

- High efficiency transformers
- LED lights
- Window replacements
- Data centers hot/cold zones
- Photovoltaic systems: 1.8MW Total
- CO₂ Neutral Gemini S.

Future Priorities:

- Battery storage for 810 kW PV system
- More efficient transformers, windows, HVAC at all sites
- EV chargers all sites
- Larger PV system to power 60% of Rubin summit operations

Will Reduce our CO₂ Footprint by 50% Relative to 2019 Levels

Graduate student visiting program in 24A

We will have two students at each site to visit each site (total 4 students) for about 2 weeks.

Observing Instruments of interest (and more) Queue planning Data reduction Meet staff, <u>give a talk etc. etc.</u>

40 students contacted us so far.

Shadow the Scientists Initiative

- Many sessions from Subaru have taken place in the past.
- Three sessions (two general and one for specially requested India session) carried out since we returned on sky.
- Canada (in French) session in Feb.
- <u>shadow@ucsc.edu</u>, <u>gn-shadow@noirlab.edu</u>

On behalf of Prof. Raja GuhaThakurta, Prof. Roy Gal, Prof. Lori Lubin, Sierra Schneider, Jameeka Marshall, the greater UCSC and Gemini-N StS teams, our outreach partners, and many others!

from Brian Lemaux's presentation for NOIRLab Faculty Meeting, Oct. 26th, 2022

Thank you!

Extra slides on Sustainability Window to the Universe

Sustainability

NOIRLab Projects

Towards zero CO₂ emission at GS

 Gemini South and Rubin PV & batteries will be executed as one project, total funding ~\$10M

- PV collection capacity 2860 kW or more
- Battery storage system 11 MWh (initial; 8.7MWh at age 7)
- Single project, one site:
 - Site already surveyed (geotechnical and insolation surveys)
 - Common infrastructure
 - Submission of Environmental Impact Affidavit
- System will operate as a unit: providing 100% of Gemini South power and 60% of Rubin

Towards zero CO₂ emission at GS

Illumination map

Towards zero CO₂ emission at GS

Gemini North: 100 kW system Production ~650 kWh/day ~12% of usage. Online September 2015

Gemini South: 207 kW system Production ~1000 kWh/day ~ 20% of usage. Online July 16, 2016

Funded: 810 kW PV System – Study and implementation plan under review

Windows on the Universe Establishing the Infrastructure for a Collaborative Multi-messenger Ecosystem

(workshop held 16-18 October 2023, Tucson)

Jen Andrews, Ryan Lau, Monika Soraisam (SOC co-chairs)

Questions driving the workshop

- 1. What are the main challenges to perform successful MMA/TDA campaigns and to maximize their scientific potential?
- 2. How should we coordinate MMA/TDA follow-up to reduce operational redundancy across the network of ground and space-based observatories?
- 3. How should we foster collaboration in the MMA/TDA community?
- 4. How can we ensure that the MMA/TDA field reaches its full potential over the next decade?

Keys to address these questions

Hardware, Software, People & Policy

How acros
 How

maxi

4. How deca

Thanks to the contributions from 40+ coauthors from the workshop, the White Paper was written in just two months!

Establishing the Infrastructure for a Collaborative Multi-messenger Ecosystem

THE 2023 WINDOWS ON THE UNIVERSE WORKSHOP WHITE PAPER WORKING GROUP: TOMÁS AHUMADA ⁽¹⁾, JENNIFER E. ANDREWS (SOC CO-CHAIR) ⁽²⁾, ², ^{*} SARAH ANTIER ⁽²⁾, ³ ERIK BLAUFUSS ⁽³⁾, ⁴ P.R. BRADY ⁽³⁾, ⁵, ^{*} A.M. BRAZIER ⁽⁶⁾, ⁶ ERIC BURNS ⁽⁶⁾, ⁷ S. BRADLEY CENKO (EDITOR) ⁽⁶⁾, ^{8,9,*} POONAM CHANDRA ⁽⁶⁾, ¹⁰ DEEP CHATTERJEE ⁽⁶⁾, ¹¹ ALESSANDRA CORSI ⁽⁶⁾, ^{12,*} MICHAEL W. COUGHLIN ⁽⁶⁾, ¹³ DAVID A. COULTER ⁽⁶⁾, ¹⁴ SHENMING FU ⁽⁶⁾, ¹⁵ ADAM GOLDSTEIN ⁽⁶⁾, ^{16,*} LEANNE P. GUY ⁽⁶⁾, ¹⁵ ERIC J. HOOPER ⁽⁶⁾, ¹⁷ STEVE B. HOWELL ⁽⁶⁾, ¹⁸ T.B. HUMENSKY ⁽⁶⁾, ⁸ JAMIE A. KENNEA ⁽⁶⁾, ¹⁹ S.M. JARRETT, ²⁰ RYAN M. LAU (SOC CO-CHAIR) ⁽⁶⁾, ^{15,*} TIFFANY R. LEWIS ⁽⁶⁾, ²¹ LU LU ⁽⁶⁾, ²² THOMAS MATHESON ⁽⁶⁾, ¹⁵ BRYAN W. MILLER ⁽⁶⁾, ²³ GAUTHAM NARAYAN ⁽⁶⁾, ²⁴ ROBERT NIKUTTA ⁽⁶⁾, ¹⁵ JAYADEV K. RAJAGOPAL ⁽⁶⁾, ¹⁵ K.M. RUIZ-ROCHA ⁽⁶⁾, ²⁵ JESSIE RUNNOE ⁽⁶⁾, ^{26,*} DAVID J. SAND (EDITOR) ⁽⁶⁾, ^{27,*} MARCOS SANTANDER ⁽²⁾, ²⁸ HUGO A. AYALA SOLARES ⁽⁶⁾, ^{19,*}
MONIKA D. SORAISAM (SOC CO-CHAIR) ⁽⁶⁾, ^{2,*} R.A. STREET ⁽⁶⁾, ^{29,*} AARON TOHUVAVOHU ⁽⁶⁾, ³⁰ SARAH J. VIGELAND ⁽⁶⁾, ⁵ SALVATORE VITALE ⁽⁶⁾, ³¹ NICHOLAS .E. WHITE ⁽⁶⁾, ³² SAMUEL D. WYATT ⁽⁶⁾, ³³ AND TIANLU YUAN ⁽⁶⁾, ²²

¹Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA
 ²Gemini Observatory/NSF's NOIRLab, 670 N. A'ohoku Place, Hilo, HI 96720, USA
 ³Observatoire de la Côte d'Azur, Université Côte d'Azur, Boulevard de l'Observatoire, 06304 Nice, France

Now available on arXiv: 2401.02063

Hardware-related recommendations

- An ecosystem of discovery and follow-up engines are required across the electromagnetic spectrum
- Critical to have *community-accessible* wide-field imaging facilities at optical/NIR wavelengths with full sky coverage (both Northern and Southern hemispheres)
 - Blanco/DECam + WIYN/ODI
- Significant investment in follow-up spectroscopy capability also desperately needed
 - Gemini, SOAR

Software-related recommendations

Challenges for MMA/TDA are unique — coordinating observations across multiple cosmic messengers *in real time* require diverse software tools. Interoperability of these tools, including interoperability between cross-agency and international archives, essential.

Significant increase in funding opportunities for MMA/TDA software necessary. Pursue a phased approach:

- Phase 1, small scale (~\$100K, 6-12 months), Alpha release for an individual team
- Phase 2, medium scale (~\$1M, 3-5 years), Beta release for the broader community
- Phase 3, large scale, Production release for *critical infrastructure*. Identify the vital MMA/TDA cyberinfrastructure for the community and redirect their long-term maintenance to a national lab, NASA center or NOIRLab

People & Policy-related recommendations

- 1. Improved career opportunities for those developing cyberinfrastructure for the MMA/TDA enterprise. E.g.,
 - weigh S/W contributions like publications in tenure/fellowship evaluations
 - NSF/NASA to highlight role of S/W contributions
 - industry-competitive salaries for S/W engineers
- 2. Closer coordination between NASA and the NSF. E.g.,
 - support existing efforts to enable MMA/TDA science at their facilities via ACROSS program and AEON Network
 - fund their extension to other wavelength facilities
- 3. Invite MMA community and observatory staff to design MMA/TDA observing programs for which data become public immediately.
 - NOIRLab/Gemini could establish key projects for MMA/TDA to remove redundancies
- 4. Fund training for researchers to do MMA science and outreach