The Coherent Differential Imaging on Speckle Area Nulling (CDI-SAN) for direct detection of Earth-like exoplanets using ground-based telescopes

Kenta Yoneta^a, Jun Nishikawa^{a,b,c}, Yutaka Hayano^{a,b}, Masatsugu Iribe^d, Kodai Yamamoto^e, Ryo Tsukui^f, Naoshi Murakami^g, Mizuki Asano^g, Yosuke Tanaka^{h,c}, Motohide Tamura^{i,c,a}, Takahiro Sumi^j, Toru Yamada^k, Olivier Guyon^{a,l,c}, Julien Lozi^a, Vincent Deo^a, Sébastien Vievard^{a,c}, Kyohoon Ahn^a

a: National Astronomical Observatory of Japan, b: SOKENDAI, c: Astrobiology Center, d: Osaka Electro-Communication Univ., e: Kyoto Univ., f: LogistLab Inc., g: Hokkaido Univ., h: Tokyo Univ. of Agriculture and Technology, i: Univ. of Tokyo, j: Osaka Univ., k: Japan Aerospace Exploration Agency, l: Univ. of Arizona

- 10

2. Principle

• Speckle Area Nulling (SAN) [2]

- \succ One of the wavefront control method that suppresses speckles in a target region
 - ✓ Synchronized focal plane intensity measurements with 5 wavefront modulations
 - $I_0 = I_s + I_p = |E_s|^2 + I_p$
 - (I_s : intensity of stellar light, I_p : intensity of exoplanetary light)
 - $I_{1,2}^{\pm} = |E_s \pm \Delta E_{1,2}|^2 + I_p$
 - $(\Delta E_1, \Delta E_2: \text{ modulated electric field}, \Delta E_1 \cdot \Delta E_2 = 0, |\Delta E_1| = |\Delta E_2|)$
 - Generating a dark hole by calculating the optimal modulation from 5 intensities \checkmark

Coherent Differential Imaging on Speckle Area Nulling (CDI-SAN)

> Post-processing technique for subtracting fluctuating speckles from observed image

- \checkmark 5 modulations and measurements are performed repeatedly at high speed
- ✓ Fluctuating speckles are subtracted using integral intensities of focal plane

$$I_{p1} = \langle I_0 \rangle - \langle I_s \rangle = \langle I_0 \rangle - \left[\frac{\langle (I_1^+ - I_1^-)^2 \rangle}{8(\langle I_1^+ \rangle + \langle I_1^- \rangle - 2\langle I_0 \rangle)} + \frac{\langle (I_2^+ - I_2^-)^2 \rangle}{8(\langle I_2^+ \rangle + \langle I_2^- \rangle - 2\langle I_0 \rangle)} \right]$$

3. Laboratory Demonstration

◆ Laboratory setup

Coronagraph: 8-Octant Phase Mask (80PM) coronagraph

Results of the laboratory demonstration

> The contrast was improved by the CDI-SAN method

➤ Wavefront control device: deformable mirror (DM) with 492 actuators

• Procedure of the laboratory demonstration

- > Diffracted stellar light was suppressed by the 80PM coronagraph
- Static speckles were suppressed by the SAN method
- ➤ Residual speckles were suppressed by the CDI-SAN method
 - The DM and the focal plane camera were controlled by the PC1 or the FPGA \checkmark

- ✓ The contrast improvement by CDI-SAN in the target region
 - 0.15 (before the dark hole generation)
 - 0.62 (after the dark hole generation)
- ✓ Same results were acquired by the PC-based and the FPGA-based control

Fig. 4 Demonstration results of the PC-based control

4. Conclusion

• The CDI-SAN method successfully suppressed residual speckles

Future works

- > Investigating causes of limitation of the contrast improvement by the CDI-SAN method
- > Developing the wide wavelength range CDI-SAN method

References

[1] J. Nishikawa, Astrophys. J., 930, 163 (2022). [2] M. Oya et al., *Opt. Rev.*, **22**, 736 (2015).

Acknowledgement

This work was supported by JSPS KAKENHI (Grant number 20H05893)

Subaru Users Meeting FY2023 (Jan. 23–25 2024)