

Novel Transmission Gr

N. Ebizuka^a, T. Okamoto^a, T, Y. Nishio^c, N. Abe^d, Y. Nakauc ^a RIKEN, ^b Toyota

Volume binary (VB) grating and

t=4.5μm a=0.28µm There is not much difference

NALUX / n_0 $heta_{diff}$ Tranezoi VB grating

Š00

between Trapezoid and VB grating at AOI~30°.

SEM photo of silica VB grating for MOIRCS Kband fabricated by anisotropic ion etching.

Silicon mold (left) and replica (right) of trapezoid grating.

5.00um 1.0kV 37.7mm x10.0k SE

Tempax VB grating RCWA:

L&S=4:1, t=6.5µm

石英VB grating

実測值:L&S=1:1,

1000

500g/mm for ALIS.

t=2.8µm,

AOI=17.7[°]

VPH grating

2.00µm

1400

1200

Wavelength [nm]

Diffraction efficiency of VB grating of

80 AOI=19.2

<u>~</u>60

Effici Effici

20

5.00um

1600

Specification of **RFT** grating Fly cut processing of hard resin. $\gamma = 38.3^\circ, \Lambda = 50^\circ$ $0\mu m, AOI=40^{\circ}).$

Echellegram acquisition optical system.

Echellegram (incandescent and mercury lamps).

The Advanced Lunar Imaging Spectrometer (ALIS) for the Lunar Polar Exploration Mission (LUPEX). 1 field of view: 2000 × 10 mm @ 5 m, full field of view: vertical scanning, Wavelength band: 750–1650 nm. Slides of Prof. Saeki @ Ritsumeikan Univers

imagination of

the ALIS tean

Measurement system with rotating stage for diffraction efficiency.

Diffraction efficiency distribution of the prototype RFT grating.

Λ=50μ	$um, \theta_0^{=}$	=40°, RCWA	Λ =50µm, θ_0 =40°, Measured		
Orders Efficiency [%]@631nm			Order Efficiency [%]@631nm		
99	1.1		99	—	
100	1.2	٦	100	1.3	1
101	0.9		ך 101		
102	84.4	-88.0% -90.6%	102 -	56.5	81.9% - 92.1% (±2) (±3)
103	2.7 -	J	ل 103	10.9	(± 2) (± 3)
104	1.4		104	8.9	
105	0.6		105	2.3	

Numerical calculation and measured diffraction efficiency. Vertex angle 38.3°, grating period 50µm, angle of incidence 40°.

The sample size was small, and the efficiency was distributed between front and rear orders due to diffraction broadening. However loss such as scattering is small.

Consideration of groove shape

Optimal groove shape of n=1.49 and diffraction efficiency: The incident beam that grazes apex of the groove and is reflected near the bottom of the groove then travels parallel to incident plane of the groove.

Diffraction efficiency of RFT grating with apex=42.0°, AOI=45°.

silicone mold

Hot press machin	Patm, 120 min ne @Metal Ltd. : 金属技研 (株)	1025°C, 1.0 atm, 60 min Horizontal electric furnace (<i>a</i>)Tohoku Univ.	
5.00kV x7.00k SE	5.00um	5.00kV x7.00k SE	
UUUU			

old grating using	Glass coloring
	F18 F18 F18 F18 F18 F18 F18 F18
5.00um	5.00kV x7.00k SE
1.0 atm, 60 min	1100°C, 1.0atm, 60 min

1100°C, 1.0atm, 60 min Horizontal electric furnace **(a)**Tohoku Univ.

Туре	Eff. [%] (λ-λ [μm])	開発状況
Volume phase holographic (VPH) grating	~100 (0.32~2.4)	 Developed VPH grisms with resin of volume hologram for instruments of 8.2m Subaru Telescope, Okayama Astrophysical Observatory and so on. Bandwidth of VPH grating is narrow, and in multi-slit mode, efficiency decreases at slit positions far from the center of the field of view.
Volume binary (VB) grating	~ 95 (0.2~1000)	 VB gratings of fused silica have developed for ALIS and for successor to MOIRCS K band VPH grisms. VB/Trapezoid grating with Tempax glass is developing by means of hot isostatic pressure processing using a silicone mold.
Trapezoid grating	~ 98 (0.2~1000)	 We are developing a trapezoid grating with a resin by replica processing using a silicon a mold.
RFT grating (Transmission echelle grating) ~ 85 (0.32~2.4)		 NiP mold of 200lp/mm had prototyped → The top of groove becomes cracked. → We are considering improvement of cutting methods. RFT grating of 20 lp/mm with hard resin is Prototyped by diamond cutting. → We confirmed that the RFT grating can be achieved high efficiency.