A new wide exploration of radio galaxies at z~2 with the gzK selection

Seira Kobayashi, Tohru Nagao, Yuta Yamamoto, Ryota Ide, Kohei Shibata (Ehime Univ.), Mariko Kubo (Tohoku Univ.), Hisakazu Uchiyama, Yoshiki Toba, Takuji Yamashita (NAOJ)

Abstract Systematic investigations of high-redshift radio galaxies (HzRGs) are useful to constrain the nature of the stellar population of their hosts. However, statistically-large samples of HzRGs, particularly at z~2, have not been constructed so far, due to their rarity and technical limitations. To address these challenges, we employed the gzK selection method that identifies both star-forming and passive galaxies in the cosmic noon. This approach enables us to carry out a comprehensive study of HzRGs at z~2. We identified a total of 88 star-forming RGs (sgzK-RGs) and 18 passive RGs (pgzK-RGs) by cross-matching optical data from Subaru/HSC, near-infrared data from VISTA VIKING, and radio data from VLA FIRST, utilizing the gzK selection criteria. Various physical properties were characterized through spectral energy distribution (SED) fitting. Interestingly, our pgzK-RGs exhibit a deviation of ~1 dex below the main sequence of star-forming galaxies, which is similar to the behavior observed in low-z RGs. This suggests that the gzK selection method can uncover a new population of RGs in the high-redshift previously unexplored.

Introduction		Results & Discussion						
Radio Galaxy (RG)	Explosions of HzRGs	Result of HzRGs candidates selection						
Passive galaxies dominate at low-z.[1],[2]	are the key to	4 $\operatorname{sgzK-RG}$ $\operatorname{pgzK-RG}$ $\operatorname{pgzK-RG}$ $\operatorname{pgzK-RG}$ $\operatorname{pgzK-RG}$ $\operatorname{pgzK-RG}$ $\operatorname{pgzK-RG}$						

log*SFR*[M_o/yr]

Fig. 5. Distribution of redshift, stellar mass and star-

log*M* ∗[M₀]

13-2

Data

Optical data :HSC-Subaru Strategic Program (HSC-SSP) S21A Wide													
Near-infrared data:VISTA Kilo-degree Infrared Galaxy Survey (VIKING)													
Radio data : FIRST (1.4 GHz)													
(mid-infrared data (for SED fitting) : unWISE (3.4 μ m, 4.6 μ m))							L M J						
Table 1. The limiting magnitudes (5 σ , AB magnitude)							V						
	g	r	i	Z	У	Z	Υ	J	Н	Ks	3.4µn	n 4.6µm	
limiting mag	26.5	26.5	26.2	25.2	24.4	22.7	22.0	21.8	21.1	21.2	20.6	20.1	
Survey HSC-SSP						VIKING unWISE						VISE	
Sample selection $(r_{2}K_{1} - (r_{2}K_{2})) = 1.32(q_{2}r_{1})$													
Samp		sele	CTIO	n	gzKs	₅ = (z-	Ks)AB -	1.32	(g-z) AE	3			
HSC - VIKING Star-forming galaxies : gzK _s > 0.0							C						
(optical-infrared sourses)					Pas	Passive galaxies : $gzK_s < 0.0$ and $(z-K_s)_{AB} > 2.7$							
Radio galaxy													
				ndida		3 -	\sim	-5-					
gzK galaxies (@ z ~ 2)					(9	gzK-R(G)						
Matching radio data					Star-forming RG 🕺								
			(sazK-RG)										
gzK - FIRST			88 objects • star-forming gzK : sgzK 24,515 objets										
(tentative candidates)			Passive RG passive gzK : pgzK										
Rejecting QSOs SED fitting				(pgzK-RG) 3,936 objets									

formation rate of sgzK-RG and pgzK-RG

Redshift and *M*_{*} **relation**

2.4

redshift

Table 3. Stellar mass of RGs (median) 1.4 < z < 2.5 0.0 < z < 1.7 redshift gzK-RG 11.56 11.08 $\log (M_*/M_{\odot})$ The fraction of objects with $M_* > 10^{11.5} M_*$ is higher in the gzK-RG sample than in low-z RG sample.

in their M_* .

The fraction of objects with $M_* < 10^{11} M_*$ is lower in the gzK-RG sample than in low-z RG sample. \rightarrow low-mass RGs were not selected because we can not see dim galaxies in K_s band.

 \rightarrow gzK-RG is more massive than low-z RGs

Redshift and specific star formation rate (sSFR)

by removing point sources $(\S3)$ gzK - RG ($\S3$) ($\$3$) ($Radio galaxy candidates$) (Radio galaxy candidates) (Radio galaxy candidates) ($Radio galaxy candidates$) ($Radio galaxy candidates$)	0 1 2 3 4 5 redshift F z < 0.8 : Passive RGs are dominant
AnalysisTable 2. parameters for SED fittingSED fittingmodel : sfhdelayedcode : CIGALE (Code Investigating GALaxy Emission [7])Tmain (Myr) : 100.0 - 10000.0aim : to estimate physical properties of our samplessp: to select reliable objets for their redshiftMF : Chabrier +03MF : Chabrier +03Mtallicity : 0.02	shaded region shows the MS with 0.3 dex scatter, and the dashed gray line shows 1 dex below MS. b = 1 < z < 5.2 star-forming RGs are dominant
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	00 [6] Bruzual & Charlot, MNRAS, 344, 1000B [7] Boquien. M., et al. 2019, A&A, 622, 103 [7] Boquien. M., et al. 2019, A&A, 622, 103 [8] Toba. Y., et al. 2019, ApJS, 243, 15 [8] Toba. Y., et al. 2019, AAA, 621, A27 [9] Falkendal. T., et al. 2019, A&A, 621, A27 [9] De Breuck, C., et al. 2000, A&AS, 143, 303 [11] Drouart. G., et al. 2010, ApJ, 725, 36 [12] Daddi. E., et al. 2004, ApJ, 617, 746 [12] Schreiber C, et al. 2015, A&A, 575, A74