

A Photometric/Spectroscopic Study of Very low-mass objects in R CrA with Subaru/MOIRCS

Takahiro KANAI, Yumiko Oasa (Saitama Univ.)

IMFs of Very low-mass objects (VLMOs) such as brown dwarfs (BDs; <0.08M $_{\odot}$) and planetary-mass objects (PMOs; < 0.013M $_{\odot}$) and their formation processes are still open issues. We have been carrying out deep NIR photometric/spectroscopic surveys (K~19-21 mag) of VLMOs in low to massive nearby Star Forming Regions (SFRs) to reveal environmental dependance of substellar IMFs and formations of VLMOs. We newly focus on the R CrA region (~150pc). UKIRT/WFCAM photometry identified ~500 VLMO candidates. However, there are uncertainties of background contaminations and age assumptions. Thus, we performed Subaru/MOIRCS multi-object follow-up spectroscopy of ~120 objects including ~30 VLMO candidates. 1 Young BD, 1 PMO and 5 Class I objects have been identified. Here we report their analysis and results.

Introduction	Survey of	of Very Low-mass Objects R Corona Australis region		
Very Low-mass Objects	JHK Photometric Survey Identify VLMO candidates	Lupus I, Ophiuchus (@150pc) Low-mass SFR	Low to intermediate-mass SFR Distance: ~150pc (Gali et al. 2020)	
Planetary- Mass objects Brown Dwarfs <0.013M⊙ 0.08M⊙ 0.013M⊙ Cteristic de Solpeter 1955 Kroupo 2001 Chobrier 2005 Thies & Kroupo 2007 Morchi & Poresce 2001	 Select YSOs from NIR excess Estimate mass with age assumption of 1Myr and evolutionally models 	Photometric survey (~3000min ²) with UKIRT/WFCAM identified ~8500 VLMO candidates in total. Derived IMFs (subtracted reference number) are increasing toward completeness limit. T Tauri Stars (TTS) and BD ratios	R CrA is a Herbig Be star. X-ray to Radio observations were identified dozens of YSOs in this region. A few BD candidates were detected by photometric surveys with Spitzer (Perterson et al. 2011), but PMO surveys	

Fig.1 Theorical IMFs (Offner et al. 2014)

Stellar IMFs from $10M_{\odot}$ to $0.5M_{\odot}$ are universal. Substellar IMFs have large uncertainty.

How abundant are brown dwarfs and planetary-mass objects? Do their IMFs depend on the local environment or not?

 \rightarrow Photometric/spectroscopic surveys in the various star forming regions (SFRs) of VLMOs

Fig. com e.g. Lupus I, Ophiuchus (low-mass SFRs) Serpens, Perseus (intermediate-mass SFRs) Cygnus, Orion B (massive SFRs)

Follow-up Spectroscopy

Confirm candidates as VLMOs Remove background stars from $Br \gamma$ absorption Estimate Teff

from water absorption band Derive mass/age of YSOs comparing with evolutionary tracks in HR diagram

- Derive mass functions - Compare with cloud properties

e.g. S106, Perseus, Serpens

differ between the clouds.

Cluster *F*

Cluster

log [M*/Mo]

Fig.2 Photometric IMFs in L1689/1709(left) and Lupus I (right) Serpens Cluster (@436pc, Oasa 2021)

> Intermediate-mass SFR Photometric survey with Subaru/MOIRCS and UKIRT/WFCAM identified ~8000 VLMO candidates.

Follow-up Spectroscopy by Subaru/MOIRCS Cluster B obtained 496 spectra.

 \rightarrow About 140 YSOs (69 BDs and PMOs) are confirmed, while 2/3 objects were background stars/galaxies.

Fig.3 (Up):Herschel 160/250/500 image. (Down): Photometric(blue)/spectroscopic(red) MFs in Serpens A/B/South

have not been performed.

Fig.3 (left):Optical image of R CrA region Credit:Loke Kun Tan.(StarryScapes) (right):Herschel 160/250/500µm composite image

Purpose

Identify BDs and PMOs in R CrA region.

• Derive their IMFs and spatial distributions to compare cloud properties.

UKIRT/WFCAM JHK 3 color posite image of R CrA region. Dbservation	Herschel 3 color composite image and of UKIRT/WFCAM.	Fig.6 [J-H]/[H-K] YSO candida excess were	H-K] color-color ites with selected	diagram NIR	05 ⁻ 19 ^h 02 ^m 00 ^s 01 ^m 40 ^s 20 ^s 00 ^s	0^{20} -3.0 -2.5 -2.0 -1.5 -1.0	-0.5 0.0	$0.5 - \frac{1}{2.5} - \frac{1}{2.0} - \frac{1}{1.5} - \frac{1}{1.0} - \frac{1}{0.5} - \frac{1}{0.0} - \frac{1}{0.5} $	
Telescope	UKIRT	Their Av wer JHK colors.	e estima	ted from	Fig.7 Spatial Distribution of Class II objects with Herschel H ₂ column density map.	Fig.8 Photometric mass vs Hersch column density.	nel dust	Fig.9 Derived IMF of R CrA region. Numbers of objects estimated in reference regions (up) are subtracted.	
Instrument	WFCAM	Class III+BGS	Class II	Class I	The highest dust density regions	Almost all BD/TTS canc	lidates are	Derived IMF shows a local peak in	
Observed bands	J, H, K	1//02 /33 60		60	are dominated by Class I candidates Most of BD/TTS regions ($N_{H} > 3.0 \times 10^{21}/cm^2$		the TTS regime and increases t		
Date of Observation	2010/08/08	Photometric r	nasses o	of Class II	candidates are located in	candidates are not dependent	ending on	IMFs in the higher dust density	
Seeing	~0.8"	candidates we	candidates were derived from		southern part of cloud.	the local dust densities.		regions shows sallower slopes.	
Field of View	13.7'×13.7' × 4 fields	evolutionally models (Baraffe et al. 2015) with the age assumption of 1 Myr.		Baraffe et al. Jmption	Similar mass-dust relations are also seen in Ophiuchus and Lupus I clouds.		 Uncertainties in the photometric survey Background contaminations Age assumptions → Spectroscopy is necessary to derive mass and age of YSOs 		
Exp. time	800s	PMO Cand.BD Cand.TTS Cand.42544		TTS Cand.	(Follow-up spectroscopy with MOIRCS will be conducted in S23A) \rightarrow Does the local dust density affect the low- mass star formation?				
Limit mag. (S/N=10)	J ~21, H ~20, K ~19mag			4					

Follow-up Spectroscopy

Fig.10 (left):Same as fig.5 with Subaru/MOIRCS FoV

Derived Spectra

Classified derived spectra with their features. ⊖YSOs

- Class I : Large IR excess

- H₂O : Water absorption bands in H-band OBackground objects (BGOs; stars/galaxies)

- $Br \gamma$ absorption

• 0.3*M*_C

photometry

Confirmed

Other

- No significant features in HK-band

photometry	PMO Cand.	BD Cand.	Class I	Other	
Observed	17	1	10	86	
Analysed	14	1	5	65	
Poor S/N	12	0	1	37	

Issues

Sky OH emissions are too bright, especially for the faint spectra. Additionally, OH emissions overlap water absorption bands.

- \rightarrow Derived Q values are unreliable.

 - 1. Subtract sky for A-B pairs.
 - 2. IRAF "background" task to subtract OH emissions.
 - 3. "apall" task to derive spectra

center): Mask design image right): Raw image of the region.	
Observation ^{4'}	
Telescope	Subaru
Instrument	MOIRCS
Observed bands	HK
Date of observation	2020/09/02
Seeing	~ 0.3"
Field of View	3.9'×6.9' ×2 masks
Number of objects	116
Exp. time	2100s, 2400s
Target mag.	H < 20mag

Fig.13 Examples of Derived spectra.

T_{eff} Estimate

eff were derived from the reddening independent water absorption index Q (Oasa 2011)

Poor S/N includes

- Not enough spectral coverage to estimate Q value - Suffered from bright OH emissions (see "Issues").

Estimating Mass/Age of YSOs

Masses and ages of YSOs were estimated from **PMOs** bolometric luminosity and : > 30Myr T_{eff} comparing with the evolutionary tracks (e.g. Baraffe et al. 2015). \rightarrow Objects with ages larger than 30Myr are identified as BGOs. Fig. 15 H-R diagram of objects estimated T_{eff} MO Cand. BD Cand. Class I 3+2

1 Young BD, 1 PMO and 5 Class I objects have been identified so far.

Fig. 17(left):Comparing derived all spectra. (right):Combined spectrum We plan to interpolate flux suffered from OH emissions. Please comment any other ideas!! Mail: *s15pp223_at_gmail.com*