

Spectroscopic observation of massive

quenching galaxy at z = 4.53 and its properties.

Takumi Kakimoto (The Graduate University for Advanced Studies, SOKENDAI), Masayuki Tanaka, Masato Onodera, Rhythm Shimakawa (NAOJ)

Summary

We report a spectroscopic confirmation of a quenching galaxy at z > 4 in the COSMOS field with the K-band of Keck/MOSFIRE. The spectrum shows a weak [OII] emission and the Balmer break. We perform SED fitting using both photometry and spectrum to infer the physical properties of the galaxy. The obtained stellar mass is very high $(\log M_* > 10^{10.5} M_{\odot})$ and the current star formation rate is 1 or more dex below that of main-sequence galaxies at z = 4.5. These results show that this galaxy is massive quiescent (no significant ongoing star formation) and the most distant quiescent galaxy which is confirmed by spectroscopic observation.

1. Introduction: Star Formation History of local elliptical galaxies

Open Questions

What are the physical drivers of the

4. SED fitting

The stellar population synthesis model

starburst and subsequent quenching?

Why did massive objects grow without star formation for a long time?

> Many studies have been conducted to search for progenitors of the local ellipticals.

2. Target: Quiescent galaxies at high-z

Typical characteristics

- Large stellar masses
- Compact size
- Little to no active formation of new stars

Comparison of the stellar mass-size plane of high redshift SMGs, quiescent galaxies, and local galaxies. [2]

How they were formed is explored through their star formation history. Overview of the stellar population synthesis technique. [3]

- Find a combination (model) of Simple Stellar Populations (SSPs) that matches the observed SED and
- This model will estimate the physical parameters (SFR, z) and star formation history.

Result: Estimated model spectrum

Fitting code: **Prospector**[4] Assumption: 1) Chabrier IMF[5] 2 Solar metallicity ③ Delayed-tau SFH

- Strong Balmer break \rightarrow Post-starburst phase

Motivation

- Observing deep rest-frame optical spectra of quiescent candidates at high redshift.
- To extend the investigation of the quiescent galaxies even further at z > 4.
- This is a formidable tool to test our galaxy formation models and simulations.

3. Target Selection & Spectroscopic follow-up

COSMOS field

- The main data sets cover a wide area ($\approx 2 \text{ deg}^2$).
- This field has been observed from the X-ray to the radio wavelength. \rightarrow High-precision photometric redshifts can be obtained.

We confirmed a high redshift massive galaxy candidate with a strong Balmer break.

Keck 10-meter telescopes (Credit: W. M. Keck Observatory)

- We performed a spectroscopic follow-up using Keck/MOSFIRE spectrograph to confirm redshift and physical parameters.
- MOSFIRE spectrograph
 - → NIR multi-object spectrograph

We can observe Balmer break within the wavelength range.

 10^{4} λ [Å]

Rest-frame UV to FIR SED & model spectrum from prospector[4].

Estimated Physical Properties

Estimated SFR is >1 dex below the main sequence of galaxies at z=4.5 (Blue line[6]).

5. Future Prospects

- The rest-frame UV light is still present.
 - \rightarrow Star formation may be

continuing.

Target galaxy's features (Preliminary) **1** Large stellar mass (2) Very short star formation timescale $(\mathbf{3})$ Younger stellar age (4) The very low star formation rate $SFR < 10 \,\mathrm{M_{\odot}/yr}$

Estimating star formation history Comparing to the cosmological

• The presence of weak [OII] emission lines allowed us to estimate the detailed redshift of the source. $z = 4.531 \pm 0.001$

James Webb Space Telescope (Credit: NASA)

Reference

[1] Thomas et al. 2010, MNRAS, 404, 1775 [2] Toft et al. 2014, ApJ, 782, 68 [3] Conroy C. 2013, ARA&A, 51, 393 [4] Johnson et al. 2021, ApJ, 254, 22

simulation results.

- \rightarrow Search for possible progenitors to study how to evolve this object.
- Follow-up observation by JWST or ALMA.
- \rightarrow We can understand the surrounding environment which may play an important role to quench.

[5] Chabrier G. 2003, PASP, 115,763 [6] Schreiber et al. 2015, A&A, 575, A74