Current Status of Cosmology Analysis with Weak Lensing and Clustering using HSC-Y3 and BOSS

Hironao Miyatake (KMI, Nagoya University) on behalf of HSC Weak Lensing Working Group KMIMKM

HSC-Y3 Cosmology Analyses Are Ongoing

Detailed Systematics Studies

Photo-z Systematics

Tested photo-z against clustering-z and derived combined inference

M. Rau (Argonne)

Cosmology Analyses

3x2pt (2x2pt + Cosmic Shear) Analyses

Measurement (S. More; IUCAA)

Large-scale Analysis Small-scale Analysis (S. Sugiyama; IPMU)

(H. Miyatake; Nagoya)

Cosmic Shear Analyses

Real-Space Analysis (X. Li; CMU)

Fourier-Space Analysis (R. Dalal; Princeton)

 4 cosmology papers (+1 measurement paper) will be out in April • Grad. students and postdocs are leading most of the projects.

HSC-Y1 Results

$\Omega_{\rm m}$: Matter energy density

 σ_8 : Amplitude of matter power spectrum (or clumpiness of the Universe)

$$S_8 \equiv \sigma_8 \sqrt{\Omega_{\rm m}/0.3}$$

 S_8 measured by HSC, i.e., from large-scale structure, is smaller than S_8 from CMB?

S_g Tension

Late universe (z < 1) probes (weak lensing, galaxy clustering, cluster count, RSD) consistently yield S₈ smaller than an early universe probe (CMB).

Smoking gun of the breakdown of ACDM?

3x2pt Cosmology Analysis

- Weak lensing enables us to measure the distribution of dark matter (~80% of the matter in the Universe)
- Cosmic shear
 - auto-correlation of weak lensing shear $\langle \gamma \gamma \rangle \sim \xi_{\rm mm}(\Omega_{\rm m}, \sigma_8)$
- **Galaxy bias** • 2x2pt
 - Galaxy-galaxy clustering $\langle gg \rangle \sim b^2 \xi_{\rm mm}(\Omega_{\rm m},\sigma_8)$
 - Galaxy-galaxy lensing $\langle g\gamma \rangle \sim b \xi_{\rm mm}(\Omega_{\rm m}, \sigma_{\rm N})$

 \rightarrow Combining $\langle gg \rangle$ and $\langle g\gamma \rangle$ cancels out b and enables us to extract $\xi_{mm}(\Omega_m, \sigma_8)$.

Data

Measurements

HSC-Y1 Analysis

Galaxy-galaxy Lensing

Galaxy-galaxy Clustering

Photo-z Redshift Calibration $\gamma \propto \frac{D_A(z_l, z_s) D_A(z_l)}{D} \delta(z_l)$ 0.98

Lensing signal has a difference response for ΔS_8 and Δz_8 .

 Δz_{s} can be calibrated if we have multiple lens samples for a single source sample!

Oguri & Takada (2011)

- Medium-band filters will be installed in HSC (using budget from 国際先導研究). They can improve photo-z calibration of faint, high-z galaxies (PFS will be useful, of course!).
- Any good science case with Medium-band filters?

Summary

- HSC Y-3 cosmology analyses are going on.
- 3x2pt results will be out together with cosmic shear analyses in a few months.
- We carry out photo-z self-calibration in the 3x2pt analysis.
- Medium-band filters can improve photo-z calibration of faint, high-z galaxies.