Exploring the early growth history of SMBHs and host galaxies with Subaru and JWST

Masafusa Onoue (KIAA / Kavli IPMU) On behalf of JWST Cy1 GO #1967

UBARU USER MEETING FY2022, FEB 2, 2023

High-z quasars - Unique probe of the early Universe Fundamental questions we aim to answer:

(SMBHs) exist?

***** When were they born? ★ What were their seeds? \star How did they grow in the early and late epochs of the cosmic history?

How did the host galaxies form and (co-)evolve?

 \star When and how did the first stellar-mass assembly happen? \star Did SMBHs impact the host galaxy evolution? If so, how? * Do they mark the highest density peaks of the DM distribution?

ionized?

When did re-ionization start and complete? * How did it proceed, as a function of space and time? * What provided the ionizing photons?

Why do supermassive black holes

When and how was the Universe re-

and many more!

Subaru Users Meeting FY2020 (Online; Mar 3-5, 2021)

Courtesy of Y.Matsuoka

HSC-SSP QSOs dominate the low-luminosity regime

z>6 QSOs

Matsuoka+16-22 * Paper II receives PASJ Excellent Paper Award 2022

eROSITA Detection of z=6.56 QSO

► HSC J0921+0007 (y_{AB}=21.2)

Subaru/MOIRCS (T_{exp}=70 min)

Left: eFEDS 0.2-2.3 keV, Right: Chandra 0.5-7 keV

Blind detection of a distant X-ray-loud QSO (high-z analog of local NLSy1?)

z=4-6 Quasar LF from HSC-SSP

z=4-6 QLF (Matsuoka+18)

HSC-SSP is currently the most powerful survey to sample representative quasar populations at high-z

QLF evolution at z=0-6 (Niida+20)

Current knowledge biased toward the most luminous (i.e., massive & active) population

Onoue+19

SMBH vs Host Dynamical Mass

• [CII] 158µm-based dynamical mass vs virial SMBH mass at z=6 (Neeleman+21)

See Izumi+18-21 for HSC quasars

BH growth first and host growth next? Direct measurements of M* are anticipated

man+21)
Schematic diagram of SMBH-galaxy co-evolution (Volonteri12)

Volonteri12

HST Images of Quasar Hosts

HST Images of Quasar Hosts

► z=0

► z=6 (CFHQS J0033-0125)

Cy1 JWST GO #1967: *Full Census of SMBHs and Host Galaxies at z=6*

PI: M.Onoue (KIAA/IPMU) Co-PIs: X.Ding (IPMU), J.Silverman (IPMU), Y.Matsuoka (Ehime U.), T.Izumi (NAOJ) + 40 Co-Is

- NIRCam Imaging (FoV: 2.2x2.2 amin²)
 - Filter: F150W + F356W _ (straddling 4000A break)
- Quasar- Host decomposition -> host stellar light detection
 - M*, age, companions, environment, etc. -

- Mean (and scatter of) M_{BH} / M_* ratio at z=6 (SMBH first, or galaxy first?)
- BH mass function, Eddington ratio distribution
- Comparison of stellar and dynamical masses (ALMA Cy9 2022.1.01135.S, PI: T.Izumi)

- NIRSpec Fixed-Slit spectroscopy
 - Grism: G395M (R=1000), 2.87-5.27µm (rest 4000-7300Å, incl. Balmer lines)
- Rest-optical emission line measurements
 - Hβ-based **M**_{BH}, BLR/NLR, [OIII] gas outflow, etc.

SUBARU USER MEETING FY2022, FEB 2, 2023

NIRCam F356W: HSC J2255+0251 (z=6.33)

- ► Module B (FoV: 2.2x2.2 arcmin²)
- 3100 sec exposure
 (4x4 primary x sub-pixel dither)
- Post-processed by JWST pipeline v1.8.0
- Resampled pixel scale: 0.0315"

SUBARU USER MEETING FY2022, FEB 2, 2023

The First Star Light Detection from z>6 Quasar Hosts

- JWST provides the opportunities to characterize M_BH and M_* of high-redshift low-luminosity quasars from the HSC-SSP
- Host stellar light is detected from the NIRCam F356W+F150W images of the first two targets with inferred stellar mass > 10^10 Msun. Spatial offset between quasar and host galaxy?
- M_{BH}. They are above the local M_{*} M_{BH} relation.

More images & spectra to come in 2023

• NIRSpec rest-optical spectroscopy reveals many broad/narrow emission lines. Host stellar absorption detected from J2236. Hbeta-based BH masses suggest the two quasars are massive both in M* and

A Low-Luminosity AGN at z>5

A z=5 faint (L_{bol}~10⁴⁴ erg/s) broad-line AGN in the CEERS field JWST can be a survey telescope for high-z faint AGN!