Is Sgr A* a Black Hole of General Relativity or of a Modified Gravity Theory? - Search for the Gravity Theory -

SAIDA Hiromi (Daido Univ.) / 斉田浩見 (talk) NISHIYAMA Shogo (Miyagi U. Edu.) / 西山正吾

+ Collaborators in Subaru Proposal/Kakenhi

- Subaru Users Meeting, 2022FY 2023/
- 特異点研究会(名駅前会議室)

2023/01/31 - 02/02 2022/12/28-30

• Members in Subaru proposals and Grants data analysis & instrumentation theory & data fitting S.Nishiyama/西山正吾 H.Saida/斉田浩見 K.Ichikawa/市川幸平 Y.Takamori/孝森洋介 H.Ikeda/池田浩之 M.Takahashi/高橋真聡 T.Nagata/長田哲也 — supporters since 2022 — Students of S.N./西山研学生 T.Takeuchi/竹内努 Y.Minowa/美濃和陽典 S.Matsui/松井瀬奈 ↑ Kakenhi A member

1.1 S-stars in GC

- PROPAGE PROPAG
- Galactic center (GC) \simeq 8 kpc from Sun Sagittarius A* (Sgr A*) + S-stars (\downarrow)

Dec (")

Sgr/A*

- S-stars : Test Particles probing grav. of Sgr A*.
- \rightarrow Newtonian fitting
- $\rightarrow M_{\rm BH} \simeq 4 \times 10^6 \, M_{\odot}$
- $\rightarrow SgrA^*$ as a Massive BH candidate

• Test of grav. theor. at MBH has just begun S0-2, S24 have Short Periapse Distance (r_p)

• Grav. Doppler effect (Red=Keck , Blue=Subaru)

1.2 Our aims, using Subaru/TMT

- NOTE : Many grav. theor. have been proposed. (General Relativity is NOT completley confirmed.)
- Fact: Rejection of Newton Gravity (GRAVITY collab. A&A 2018 ; Do et al. 2019 Science ; Saida et al. 2019 PASJ)
- Our aim: Which of gravity theories predicts the curve best-fitting with the data?
- \rightarrow Method (explained from the next page) Parametrized Post-Newtonian (PPN) formalism

• Other aims:

◇ Invisible Mass Distribution around Sgr A*
 ◇ Origin of stars in GC (Co-evolution of SMBH and galaxy?)

2. Study of Gravity Theory

2.1 Taylor expansion of grav. pot.

• Post-Newtonian (PN) parameter $(V_{\rm p} \simeq 0.03c)$

$$arepsilon \sim rac{GM_{
m BH}}{c^2 r_{
m p}} pprox \left(rac{V_{
m p}}{c}
ight)^2 \sim 10^{-3} \in \begin{tabular}{ll} Un-explored region \ in (M_{
m BH}, arepsilon) \ space \ \end{array}$$

- PN expansion: Taylor expansion of Grav. Pot. of Kerr BH (BH in GR) $g_{\mu\nu}^{
 m Kerr}$ by ε
- Parametrized PN formalism : Introduce some artificial parameters in the PN expansion of $g_{\mu\nu}^{\rm Kerr}$

2.2 PPN expansion and parameters

• BH's metric tensor (multi-comp. grav. pot.) $g_{tt} = -1 + \frac{2m}{r} + A \frac{m^2}{r^2} + [higher] , \ m = \frac{GM_{\rm BH}}{r^2}$ $g_{tx} = +2\chi \frac{x}{r} \frac{m^2}{r^2} + [\text{higher}] \quad , \ \chi = \frac{cJ_{\text{BH}}}{GM_{\text{DH}}^2} \quad \left| \varepsilon = \frac{m}{r} \right|$ $g_{ty} = -2\chi \frac{y}{r} \frac{m^2}{r^2} + [higher]$ This is a simplest PPN $g_{tz} = +2\chi C_z \frac{z}{r} \frac{m^2}{r^2} + [higher]$ formulation with A, B, C_z for measuring the deviation from GR. $g_{ij} = \delta_{ij} + 2B \frac{x^i x^j}{x^2} \frac{m}{x} + \text{[higher]}$

• Kerr (BH in GR) case
$$\Rightarrow$$
 $A = C_z = 0, B = 1$

Observational determination of $\{A, B, C_z\}$ can be regarded as a selection of gravity theories.

- PPN parameters $\{A, B, C_z\}$ modify the E.O.M. of stars and photons.
- \rightarrow Time evolution of Dec., R.A. and z (redshift) depend on $\{A, B, C_z\}$.

 \rightarrow By monitoring observation of S0-2 and S24, the best-fitting search of $\{A, B, C_z\}$ is possible.

S24 obs. needs IR AO (our kakenhi A is contributing)

2.3 Science targets with Subaru/TMT

• One science target with Subaru

A and B are the effects of Sgr A* mass $M_{\rm BH}$

 $\rightarrow A \text{ is 1PN order, and } B \text{ is 1.5PN order.}$ (B is detectable with Subaru if B > O(10))

• One science target with TMT

 C_z is the effects of Sgr A* spin $J_{
m BH}$

 $ightarrow C_z$ is 1.5PN order (not detectable with Subaru)

• Currently we consider A and B without C.

3. Current Status

- Fact: Time evolution of obs. quantities (E.O.M. of stars and photons) depend on not only {A, B} but also all parameters in grav. potential g_{µν} and the choice of astrometric origin (∵ BH is invisible).
- Searching the value of <u>19 + 2PPN</u> parameters by fitting <u>PPN from</u> of grav. pot. with <u>obs. data</u> of S0-2's motion.
- \bullet 19 parameters, except for $\{A,B\}$ are \cdots

• 19 parameters, except for $\{A, B\}$

 $M_{\rm BH}$: Mass of Sgr A^{*} (massive BH) R_{SgrA} : Distance to Sgr A^{*} $(\vec{a}_{\mathrm{BH}} : \mathsf{BH} \mathsf{spin} (\mathsf{magnitude} and direction) \leq 1.5\mathsf{PN})$ \vec{x}_{apo} , \vec{v}_{apo} : S0-2's initial conditions (6 components) $\vec{v}_{\rm E}$: Our velocity w.r.t. Sgr A*(3 comp.) $(X, Y)_{\text{Keck}}$: Astro. reference point for Keck $(X, Y)_{\text{Keck}}$: Velocity of the ref. point for Keck $(X, Y)_{VLT}$: Astro. reference point for VLT $(X, Y)_{VLT}$: Velocity of the ref. point for VLT $(X,Y) \stackrel{!}{=} (R.A., Dec.)$ NOTE: $\begin{cases} Our \text{ coordinate origin is at Sgr A}^* \\ Assume \vec{v}_E \text{ and } (\dot{X},\dot{Y}) \text{ are constant} \end{cases}$

- We have performed χ^2 -fitting. (NG = Newtonian Gravity)
- $\diamond \text{ NG and GR } (A = 0, B = 1) \text{ cases}$ Saida et al. PASJ 2019 + Preliminary incl. new data $\circ \chi^2_{\text{red}} = \begin{cases} 1.3425 \text{ for Newton Grav. (NG)} \\ 1.3296 \text{ for Einstein Grav. (GR)} \end{cases}$
 - Best-fitting values of some parameters:

 \diamond PPN case (without C_z): $\chi^2_{
m red} = 1.3016$ Preliminary

• Best-fitting values of some parameters:

$M_{ m BH} \left[10^6 M_{\odot} ight]$	•	$3.996~\pm~0.005$
$R_{ m SgrA}\left[{ m kpc} ight]$	•	7.988 ± 0.004
$T_{S0-2}\left[yr ight]$	•	16.0606 ± 0.0003
$v_{\mathrm{E/\!/}}[\mathrm{km/s}]$	•	$-9.6~\pm~0.5$
A [no.dim.]	•	$22.7~\pm~1.3$
B [no.dim.]	•	-6.9 ± 0.9

 \circ Inconsistent with Schwarzschild (BH in GR), $A \neq 0 \ , \ B \neq 1 \ \text{within several } \sigma$

 ◇ Although ∆ \chi_{red}^2 = 1.33(GR)-1.30(PPN)= 0.03, if PPN is true, there are two possibilities:
 ○ the assumption "2-body-system in vacuum BH spacetime" is not good ?

o a "modified gravity theory" is favored ?

EXAMPLE NOTE Difference of χ^2_{red} between GR and PPN is NOT statistically significant. We are planning to perform the **Hierarchical Bayesian Estimation**.

 \rightarrow this is on going, I have no result to report here.

4. Summary

- Using the data of S-stars, Gravity/BH is tested.
- BH's mass effects are in our detection capability.
- Geodesic (Free fall) motion is the good model.
- Preliminary PPN χ^2 -fitting is inconsistent with Schwarzschild (BH in GR) case:

$$A=22.7\pm1.3$$
 , $B=-6.9\pm0.9$

 Hierarchical Bayesian code is under construction.
 → with Takeuchi (竹内さん) and Matsui (松井さん) (Nagoya Univ. Ω-Lab.)

• Subaru GC research beyond GR has just begun.

