Anisotropic satellite quenching in galaxy clusters up to $z \sim 1$ detected by the HSC-SSP survey

Subaru Users Meeting FY2022 @NAOJ+zoom (1st, Feb., 2023)

Ando et al. 2023, MNRAS, 519, 13 (arXiv: 2209.00015)

Makoto Ando

U.Tokyo D3 -> PosDoc. @U.Tokyo (for 1yr)

Kazuhiro Shimasaku (U.Tokyo) Kei Ito (U.Tokyo) HSC-SSP Project:439

Press Release from Subaru

- Star formation activity depends on environment
- Groups/clusters are dominated by quiescent population
 - ram-pressure stripping (RPS) / strangulation / interactions

Introduction — Anisotropic satellite quenching

- Quenching in groups/clusters occurs "anisotropically"
 - (larger f_q along the major axis <--> lower f_q along the minor axis)

Introduction — Anisotropic satellite quenching

- Interpretation (MN21): strength of RPS is anisotropic within halo
 - (:: Anisotropic ICM density due to AGN feedback of central galaxies)
 - ➡ constraining on feedback model ??

Introduction — Anisotropic satellite quenching

- Is anisotropic quenching ubiquitous over wide redshift range?
 - only few studies at low-z (MN21@ $_z \sim 0.08$, Stott 22@ $_z \sim 0.5$)
 - need large sample (:: small amplitude)
 - → Large galaxy and cluster sample from the HSC-SSP (WIDE)

©NAOJ

HSC-SSP WIDE

Aihara+22

Sample

- Galaxy: HSC-SSP S21A WIDE (~800 deg²) (Mizuki photo-z; Tanaka+15)
 - $\ \ \, \ \log(M_*/M_\odot) > 10$
 - QG: $sSFR < 10^{-11} yr^{-1}$, SFG: $sSFR > 10^{-11} yr^{-1}$
- Cluster: CAMIRA Cluster catalog (S20A; Oguri+18)
 - > 5000 **clusters** @0.1 < *z* < 1.25
 - satellite selection: $\Delta z \le 0.05 \times (1 + z_{cls}) \& \Delta r \le 1 (2) \times r_{200m}$
 - → calculate $f_q = f_q(\theta)$

Subaru UM FY2022

1st, Feb., 2023

- Periodical fuguration at 0.25 < z < 1
 - f_q is right (row and the major (princr) at
 - · Modell fitting by sir usoida function

 r_{200m}

minor

najo

- Periodical fuguration at 0.25 < z < 1

 - Model fitting by sindsoida function

Result of a ton-astar function of ortentation and and the ton

- Sinusoidal Function well fits the cate at 0.25 < A< (> 50)

- The sinusoids much better in $Q_{\nu}^2 \sim 1$ than the constants in

Subaru UM FY2022

l st, <mark>Fe</mark>b., <mark>20</mark>23

 $f_{\rm q} = A_{\rm q} \cos(2\theta) + f_{\rm q,0}$

Discussion: what are origins of the observed anisotropy?

Physical Origin	ref.
(A) The anisotropy in strength of RPS	MN21
(B) Anisotropic matter density b/w the two axes	Stott 22
(C) Pre-processed galaxies accreted from the major axis direction	Huang+16

Discussion: radial dependence of the anisotropy

Radial dependence

 $f_q(r)$ around the major and minor axes ($\Delta \theta = 30 \deg$)

- . Excess of f_q is only significant at $r < r_{200m}$
- Anisotropic quenching does not occur outside of a halo

 $f_q(\sigma)$ within r_{200m} ($\Delta \theta = 30 \deg$)

. f_q is higher around the major axis even at fixed local density

Anisotropy is not just caused by the difference in the local density b/w the two axes

1st, Feb., 2023

Discussion: timescales of quenching

- For anisotropic quenching to be observed, satellites need to be quenched before their orientation will be changed
 - At most one cluster crossing time (cf. Kuchner+21), $\sim 2 \, \text{Gyr.}$
- Representative quenching mechanisms in clusters
 - ram-pressure stripping: $\leq 1 \, \text{Gyr}$
 - harassment: $\gtrsim 3 \, \text{Gyr}$
 - strangulation: $\gtrsim 7 \, \text{Gyr}$
 - → ram-pressure stripping is preferred in terms of quenching timescale

Discussion: what are origins of the observed anisotropy?

Physical Origin	radial	density	mass	timescale
(A) The anisotropy in strength of RPS	\bigcirc		\bigtriangleup	\bigcirc
(B) Anisotropic matter density b/w the two axes		×		
(C) Pre-processed galaxies accreted from the major axis direction	×			

- We have clearly detected anisotropic quenching in clusters at 0.25 < z < 1.
- The anisotropy in the strength of ram-pressure stripping may be the physical origin of this phenomenon.
- Future prospectives:
 - Extending this study beyond z = 1 (ongoing with other cluster data)
 - Reproducing the anisotropic quenching in a simulation

