Progress of HSC-SSP Project

Satoshi MIYAZAKI

Subaru Telescope/NAOJ

Subaru UM 2023/02/01

- On March, 2014, HSC-SSP started and the last observing night was 2022/01/03 (HST).
- Long-long 300 + 30 nights observations have been successfully completed thanks to the tremendous efforts made by observatory's scientists and staff members. We really appreciate their continuous collaboration.

<u>Data Release</u>

Slide presented last year

IDR	S16A	2016/08/04	Data used for the special issue.	
	S17A	2017/09/28		
	S18A	2018/06/25	PDR2 on 2019/05/30. 174 nights.	
	S19A	2019/09/25		
	S20A	2020/08/03	275 nights -> PDR3	
	S21A	2021/06	Possibly an incremental release (~318 nights)	< 1
	S22A	2022/Summer	Final data release (330 nights). This will become PDR4	year
		or beyond		
PDR	PDR1	2017/02/28	FCFD area only. 61.5 nights	
	PDR2	2019/05/30	174 nights	Ъ
	PDR3	2021/08 S20	0A Data release to public	
	PDR4	TBD All data.	Final data release. 330 nights.	

DM pipe line is experiencing big upgrade (butler gen2 -> gen3). The final data analysis must wait until the upgrade is completed. 2022/Summer is reported to be TITGHT, possibly S22B or S23A

SSP Internal Release S23A/B - Status

• Plan

- Release: targeting ~2023.11 (if everything goes without any problem)
- Reprocess all data with a new version of LSST pipeline (Gen3 framework)

Dataset

- All SSP data for the entire survey period 2014.4 2021.12
- Wide 1,087 sq.deg (for i,z,y bands \geq 5visits)
- D+UD ~27 sq.deg

Tentative Schedule

- 2022.9-2022.11: Reviewed test products (100 sq.deg) by SSP collaboration
- 2022.12: Determined the pipeline version
- 2023.1(now): Production work underway + some additional tests behind
- 2023.7-8: Finalizing processing (may require additional time depending on stability of the pipeline)
- 2023.9-10: QA, database ingestion, and documentation
- 2023.11? Internal Release

Validation of Gen3 processing

 SSP volunteers evaluated astrometry, photometry, detection/deblend, CMR/photo-z, and PSF determination (accuracy, consistency, and stability)

Science Highlight 2022

HSC-Y1 Cosmology Analyses Completed

New!! 2x2pt = BOSS galaxy clustering x BOSS-HSC galaxy lensing

New!! Cosmic shear analysis with a new estimator COSEBIs

HSC-Y3 Cosmology Analyses Are Ongoing

(= HSC-Y1 X 3 wider)

- 4 cosmology papers (+1 measurement paper) will be out in April
- Grad. students and postdocs are leading most of the projects.

Publications Related to Weak Lensing / Cosmology

- Cosmology and related papers
 - Zhang et al., "A General Framework for Removing Point Spread Function Additive Systematics in Cosmological Weak Lensing Analysis," arXiv:2212.03257.
 - Rau et al., "Weak Lensing Tomographic Redshift Distribution Inference for the Hyper Suprime-Cam Subaru Strategic Program three-year shape catalogue," arXiv:2211.16516.
 - Hamana et al, "E/B mode decomposition of HSC-Y1 cosmic shear using COSEBIs: cosmological constraints and comparison with other two-point statistics," 2022, PASJ, 74, 923.
 - Sugiyama et al., "HSC Year 1 cosmology results with minimal bias method: HSC×BOSS galaxy-galaxy weak lensing and BOSS galaxy clustering," 2022, PhRvD, 105, 123537.
 - Miyatake et al., "Cosmological inference from emulator based halo model II: Cosmological constraintsfrom galaxy-galaxy weak lensing and galaxy clustering with HSC-Y1 and SDSS data," 2022, PhRvD, 106, 083520.
 - Miyatake et al., "Cosmological inference from an emulator based halo model. I. Validation tests with HSC and SDSS mock catalogs," 2022, PhRvD, 106, 083519.
 - Miyatake et al., "First Identification of a CMB Lensing Signal Produced by 1.5 Million Galaxies at z ~4 : Constraints on Matter Density Fluctuations at High Redshift," 2022, PhRvL, 129, 061301.
 - Li et al., "The three-year shear catalog of the Subaru Hyper Suprime-Cam SSP Survey," 2022, PASJ, 74, 421.
- Galaxy clusters and galaxies
 - Rana et al., "Splashback radius of X-ray galaxy clusters from eFEDS using galaxies from HSC survey," arXiv:2301.03626.
 - Luo et al., "Dark matter halos of luminous AGNs from galaxy-galaxy lensing with the HSC Subaru Strategic Program," arXiv:2204.03817.
 - Miriam et al. "The eROSITA Final Equatorial-Depth Survey (eFEDS): A complete census of X-ray properties of Subaru Hyper Suprime-Cam weak lensing shear-selected clusters in the eFEDS footprint," 2022, A&A, 661, A14.
 - Chiu et al., "The eROSITA Final Equatorial-Depth Survey (eFEDS): The X-ray Scaling Relations of Galaxy Clusters and Groups with the Weak-Lensing Mass Calibration from the Subaru Hyper Suprime-Cam Survey," 2022, A&A, 661, A11.
 - Huang et al., "The Outer Stellar Mass of Massive Galaxies: A Simple Tracer of Halo Mass with Scatter Comparable to Richness and Reduced Projection, "2022, MNRAS, 515, 4722.

AGN working group

~110 researchers belong to the AGN WG.

Number of projects (HSC Joint-Data Project)	121 (7)
Number of publications (under review)	68 (6)
Number of proposals (accpected)	~300 (~40%)

Yoshiki Toba

Tohru Nagao

12th HSC-AGN meeting at Kagoshima U. (Nov.30 - Dec.2, 2022)

20 **Submitted** 15 Published Count 10 5 0 2015 2021 2022 2016 2017 2018 2019 2020 Year

HSC-AGN publication

HSC view of quasars

Local Universe (z < 2)

No significant evolution of M_{BH}-M_{*} relation up to z ~2.

<u>High-z Universe (z > 6)</u>

>100 low-luminosity quasars were discovered.

data-point s

Xuheng Ding (IPMU)

Masafusa Onoue (KIAA/IPMU)

Ding, Onoue+22 (submitted)

1st detection of

stellar light from

quasar by JWST!

(See also Ding+20, Li+21a, Li+22)

Multi-wavelength properties

<u>AGN WG</u>

Yoshiki Toba (NAOJ)

X-ray AGN

eROSITA view of WISE-selected AGNs at *z* < 4.

(See also Brusa+22, Liu+22, Salvato+22, Pouliasis+22, Vijarnwannaluk+22)

Radio AGN

The most overdense region at *z* ~ 5 inhabited by a Radio AGN.

(See also Yamashita+20, Uchiyama+22ab) Uchiyama, Yamashita+22c

High-z IGM Studies with HSC

- 1. Yoshioka et al. 2022, ApJ, 927, 32
 - NB921-selected LAEs & IB945-selected LBGs at z=6.6
 - \cdot n(LAE) / n(LBG) as an estimator of neutral hydrogen fraction $_{2.75}$
 - Directly map out a spatially inhomogeneous topology of reionization
- 2. Kakiichi et al. 2023, submitted to MNRAS (arXiv:2301.00373)
 - "Photometric IGM tomography" newly proposed
 - \cdot novel approach to estimate Lya-forest abs using NB data
 - 2D map of IGM HI at z~5
- 3. Mawatari et al. 2023, accepted in AJ (arXiv:2110.11977)
 - Multi-band photometry and spec-z catalog for
 IGM galaxy research

n(LAE)/n(LBG) ≒ xHI map

Deep CO Obs. for Three LBGs at z=6.0923-6.2037

 marginal CO(6–5) detection from J0235. consistent with the previous UV+[OIII]+[CII] observations.

J1211 & J0217: no significant CO(6–5).

- · J0235: lower Σ_{SFR} than local SBs. J1211 & J0217: consistent with local SBs.
- \cdot z=5-6 average is consistent with local SBs with possibly large scatter.

PASJ Excellent Paper Award 2022

announced last week

- · Harikane et al. 2018 PASJ 70 SP1 S11
 - GOLDRUSH. II. Clustering of galaxies at z~4-6 revealed with the half-million dropouts over the 100 deg2 area corresponding to 1 Gpc3
- Matsuoka et al. 2018 PASJ 70 SP1 S35

•

 $_s$ Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 quasars and luminous galaxies at 5.7 < z ≤ 6.8

Development of Science Platform

• Designing a JupyterHub-based platform

- to perform efficient analysis over the existing products from remote
- to make efficient use of computing resources
- PFS involves the platform within a science archive frame work

Prototype of HSC Science Platform

 ADC+Subaru is discussing to construct a science platform service connecting to the HSC data release PDR3

(See a poster by Morishima et al., too)

• ADC Team Tentative target plan

- First prototype -2023.4
- Internal review 2023.5
- Preview by SSP collaboration 2023.9-
- Design for PDR (and public data) -2024.3
- Preview for PDR 2024.4
- Stable operation for PDR mid 2025 TBD

System Development

A cluster for Science Platform (HSC + Rubin collaboration) C In a new computer room

on) QuickDB and CPUs ⁿ Hardware assisted by CfCA

System diagram for Prototype HSC Science Platform

4