NRC·CNRC

The Suprime-Cam Legacy Archive at the Canadian Astronomy Data Centre NRC.CANADA.CA • 📼 🎔 🞯

ional Research Conseil national de uncil Canada recherches Canad

Stephen Gwyn Ca

'N Canadian Astronomy Data Centre

Motivation

Increasing the value of the Suprime-Cam archive

- For many telescopes, half the papers are archival
- Another way to state this is that an archive doubles the value of the facility
- MegaPipe for MegaCam on CFHT produces ~30 papers per year
- Suprime-Cam vs. MegaCam
 - Same excellent seeing
 - Slightly smaller area
 - Much deeper
- Suprime-cam archive is an extremely valuable data set
 - 5000 square degrees
 - 82000 images
- The Suprime-Cam Legacy Archive seeks to increase the value of the archive by providing science ready data products to astronomers
- Many thanks to Ikuru Iwata for suggesting it
- Many thanks also to Hisanori Furusawa and Tsuyoshi Terai for invaluable advice

Declinetion

Stephen Gwyn Canadian Astronomy Data Centre

Warning Boring talk ahead

(Unless you are a data pipeline otaku, you should take a short break now)

Detrending

- Bias removal and flatfield done with sdfred (Ouchi, Furusawa, Komiyama and Yagi)
- Bias frames built on a run-by-run basis
- Flat fields built from (in order of decreasing preference)
 - night sky flats (object flats)
 - twilight flats
 - \circ dome flats
- Object flats produce slightly deeper images
- Object and twilight flats have better photometric flatness

Detrending

Photometric superflat

- Zeropoint varies across the focal plane by 5-10%
- Measured on a run-by-run, filter-by-filter basis by comparison with Pan-STARRS
- Typically small variations (depending on flat type)
- Occasionally large variations (detector change)
- Corrections applied as photometric super flat to each image before further processing

Detrending Photometric superflat

- Zeropoint varies across the focal plane by 5-10%
- Measured on a run-by-run, filter-by-filter basis by comparison with Pan-STARRS
- Typically small variations (depending on flat type)
- Occasionally large variations (detector change)
- Corrections applied as photometric super flat to each image before further processing

Astrometric calibration

- Astrometric calibration done using GAIA DR2 as a reference
- Each image calibrated completely independently
- Include effects proper motion
- Distortion model:
 - radial distortion: 5th order polynomial
 - chip shift and skew 1st order corrections chip-by-chip
 - Removes potential for over fitting
- Astrometric residuals measured:
 - with respect to GAIA
 - between overlapping images
 - typically 30-40 mas

- Photometric calibration is done using Pan-STARRS 3PI as a reference
- Convert PS ugriz into Suprime-Cam photometric system using 3rd order polynomial based on synthetic photometry using Pickles and CALSPEC spectra
- Use PS stars as in-field standards
- Conversion is relatively simple for Sloan filters, less, so for others
- Each image measured independently
- Measure photometric residuals:
 - With respect to Pan-STARRS
 - between overlapping images
 - 0.01-0.03 magnitudes

- Photometric calibration is done using Pan-STARRS 3PI as a reference
- Convert PS ugriz into Suprime-Cam photometric system using 3rd order polynomial based on synthetic photometry using Pickles and CALSPEC spectra
- Use PS stars as in-field standards
- Conversion is relatively simple for Sloan filters, less, so for others
- Each image measured independently
- Measure photometric residuals:
 - With respect to Pan-STARRS
 - between overlapping images
 - o 0.01-0.03 magnitudes

- Photometric calibration is done using Pan-STARRS 3PI as a reference
- Convert PS ugriz into Suprime-Cam photometric system using 3rd order polynomial based on synthetic photometry using Pickles and CALSPEC spectra
- Use PS stars as in-field standards
- Conversion is relatively simple for Sloan filters, less, so for others
- Each image measured independently
- Measure photometric residuals:
 - With respect to Pan-STARRS
 - between overlapping images
 - o 0.01-0.03 magnitudes

- Photometric calibration is done using Pan-STARRS 3PI as a reference
- Convert PS ugriz into Suprime-Cam photometric system using 3rd order polynomial based on synthetic photometry using Pickles and CALSPEC spectra
- Use PS stars as in-field standards
- Conversion is relatively simple for Sloan filters, less, so for others
- Each image measured independently
- Measure photometric residuals:
 - With respect to Pan-STARRS
 - between overlapping images
 - 0.01-0.03 magnitudes

Resampling and coadding

- Resampling using astrometric calibration
- Scaling using photometric calibration
- Reject pixels using masks
- Coadd using a clipped mean
- Resample two ways:
 - Regular grid:
 - 10k x 10k pixel tiles
 - Spaced 0.5 degrees in Dec and RA
 - Same grid used for CFHT
 - Natural grouping of using a friends of friends algorithm

Resampling and coadding

- Resampling using astrometric calibration
- Scaling using photometric calibration
- Reject pixels using masks
- Coadd using a clipped mean
- Resample two ways:
 - Regular grid:
 - 10k x 10k pixel tiles
 - Spaced 0.5 degrees in Dec and RA
 - Same grid used for CFHT
 - Natural grouping of using a friends of friends algorithm

1;

Resampling and coadding

- Resampling using astrometric calibration
- Scaling using photometric calibration
- Reject pixels using masks
- Coadd using a clipped mean
- Resample two ways:
 - Regular grid:
 - 10k x 10k pixel tiles
 - Spaced 0.5 degrees in Dec and RA
 - Same grid used for CFHT
 - Natural grouping of using a friends of friends algorithm

Data products

- Individual calibrated images and associated masks
 - Useful for synoptic studies (e.g. moving objects, variables)
- Coadded images and associated, weight maps and catalogs
- Not available:
 - full source catalog equivalent to the NOIRLab Source Catalog
 - merged, all image catalog

Data interface

- Graphical Search Tool
- Regular query interface
- Programmatic VO tools
- Provide direct, persistent links to data

https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/scla/

Downloa	d Showing 92 rows (92 t	efore litering). Change Columns	View in sky							
Mark P.	Collection	Obs. ID	Product ID	RA (J2000.0)	Dec. (J2000.0)	"Start Date	Instrument	Int. Time	Target Na	Filte
ilter:										
				H:M:S Y	D:M:S ~	Calendar ~		Seconds ~		
	SUBARUCADC	SCLA.362.206	SCLA.362.206.W-S-R+	12:23:02.63	+13:00:00.1	2011-01-05 00:00:	Suprime-Can	856.000	NGC4374	W-S-F
01	SUBARUCADC	SCLA 363.205	SCLA.363.205.W-S-R+	12:23:37.60	+12:30:00.1	2011-01-05 00:00:	Suprime-Can	1732.000	NGC4374	W-S-
	SUBARUCADC	SCLA 363.206	SCLA 363.206.W-S-R+	12:25:05.80	+13:00:00.1	2011-01-05 00:00:	Suprime-Can	856.000	NGC4374	W-S-F
01	SUBARUCADC	SCLA 363.208	SCLA.363.208.W-S-R+	12:28:13.53	+14:00:00.1	2011-01-05 00:00:	Suprime-Can	754.000	NGC4459	W-S-F
01	SUBARUCADC	SCLA.364.206	SCLA.364.206.W-S-R+	12:27:08.95	+13:00:00.1	2011-01-05 00:00	Suprime-Can	856.000	NGC4374	W-S-I
01	SUBARUCADC	SCLA 364 208	SCLA.364.208.W-S-R+	12:30:17.20	+14:00:00.1	2011-01-05 00:00:	Suprime-Can-	484.000	NGC4459	W-S-
0.1	SUBARUCADC	SCLA 364 205	SCLA.364.205.W-S-R+	12:25:40.53	+12:30:00.1	2011-01-05 00:00:	Suprime-Can	856.000	OFFSETsky	W-S-I
01	SUBARUCADC	SCLA 186.264+12.884	SCLA_186.264+12.884.W-S-R	12:25:03.35	+12:53:03.6	2011-01-05 00:00	Suprime-Can			W-S-
	SUBARUCADC	SCLA 187.250+13.978	SCLA 187 250+13.978.W-S-R	12:28:59.97	+13:58:42.3	2011-01-05 00:00:	Suprime-Can-	484.000		W-S-
	SUBARUCADC	SCLA 365 206	SCLA 365.206 W-S-R+	12:29:12.11	+13:00:00.1	2010-04-12 00:00			NGC4473	W-S-
0.1	SUBARUCADC	SCLA.365.207	SCLA.365.207.W-S-G+	12:30:44.59	+13:30:00.1	2010-04-12 00:00	Suprime-Can	1304.000	NGC4473	W-S-
01	SUBARUCADC	SCLA.365.207	SCLA.365.207.W-S-R+	12:30:44.59	+13:30:00.1	2010-04-12 00:00	Suprime-Can	506.000	NGC4473	W-S-I
0 ±	SUBARUCADC	SCLA 362 206	SCLA.362.206.W-S-1+	12:23:02.63	+13:00:00.1	2010-04-12 00:00	Suprime-Can	1283.200	NGC4374	W-S-
	SUBARUCADC	SCLA 363 205	SCLA.363.205.W-S-I+	12:23:37.60	+12:30:00.1	2010-04-12 00:00	Suprime-Can	2916.400	NGC4374	W-S-I
0 ±	SUBARUCADC	SCLA.364.207	SCLA.364.207.W-S-R+	12:28:41.18	+13:30:00.1	2010-04-12 00:00:	Suprime-Can	1120.000	NGC4473	W-S-
01	SUBARUCADC	SCLA.364.205	SCLA.364.205.W-S-I+	12:25:40.53	+12:30:00.1	2010-04-12 00:00	Suprime-Can	1283.200	OFFSETsky	W-S-
0.1	SUBARUCADC	SCLA 366.206	SCLA 366.206 W-S-R+	12:31:15.28	+13:00:00.1	2010-04-12 00:00	Suprime-Can	388.000	NGC4473	W-S-
01	SUBARUCADC	SCLA 186.264+12.884	SCLA 186.264+12.884.W-S-I	12:25:03.35	+12:53:03.6	2010-04-12 00:00	Suprime-Can	1283.200	NGC4374	W-S-I
01	SUBARUCADC	SCLA 187.420+13.430	SCLA 187 420+13 430 W-S-G	12:29:40.70	+13:25:48.8	2010-04-12 00:00	Suprime-Can	1436.000	NGC4473	W-S-
	SUBARUCADC	SCLA 187.420+13.430	SCLA 187.420+13.430.W-S-I	12:29:40.70	+13:25:48.8	2010-04-12 00:00	Suprime-Can	920.000	NGC4473	W-S-I
0 🛓	SUBARUCADC	SCLA 187.420+13.430	SCLA 187.420+13.430.W-S-R	12:29:40.70	+13:25:48.8	2010-04-12 00:001	Suprime-Can	560.000	NGC4473	W-S-I
01	SUBARUCADC	SCLA.365.204	SCLA 365.204 W-J-V	12:26:18.52	+12:00:00.1	2010-03-11 00:00:	Suprime-Can	5100.000	OFFSETsky	W-J-1
0 ±	SUBARUCADC	SCLA 365 205	SCLA.365.205.W-J-V	12:27:43.43	+12:30:00.1	2010-03-11 00:00	Suprime-Can			W-J-\
01	SUBARUCADC	SCLA.365.206	SCLA.365.206.W-J-V	12:29:12.11	+13:00:00.1	2010-03-11 00:00:	Suprime-Can	18000.000	NGC4473	W-J-\
01	SUBARUCADC	SCLA 367 204	SCLA 367.204.W-J-V	12:30:23.87	+12:00:00.1	2010-03-11 00:00	Suprime-Can	14880.000	NGC4486/Fi	W-J-V
	SUBARUCADC	SCLA.368.204	SCLA.368.204.W-J-V	12:32:26.56	+12:00:00.1	2010-03-11 00:00			NGC4486/FI	
	SUBARUCADC	SCLA.363.205	SCLA.363.205.W-J-V	12:23:37.60	+12:30:00.1	2010-03-11 00:00				W-J-\
	SUBARUCADC	SCLA 364.204	SCLA 364.204,W-J-V	12:24:15.83	+12:00:00.1	2010-03-11 00:001			OFFSETsky	W-J-1
01	SUBARUCADC	SCLA 364.205	SCLA.364.205.W-J-V	12:25:40.53	+12:30:00.1	2010-03-11 00:00:	Suprime-Can	8400.000	OFFSETsky	
01	SUBARUCADC	SCLA.366.205	SCLA.366.205 W-J-V	12:29:46.36	+12:30:00.1	2010-03-11 00:00	Suprime-Can	34760.000	V STRMR	W-J-V
01	SUBARUCADC	SCLA 366 206	SCLA.366.206.W-J-V	12:31:15.28	+13:00:00.1	2010-03-11 00:00	Suprime-Can	10440.000	NGC4473	W-J-V

_				`		
Right Ascension	136.436495	Declination	17.810228	Zoom 3	Go	,
Object	Go	Clear 🗹 Coordii	nate Grid 🗹 II	ndividual Imag	es 🗹 Stack	ed Images
Filters						
All Broad ba B V R g r I I G IA427 IA445 IA651 IA679 NA656 NB7	 ✓ IC ✓ VR ∠ Y ✓ IA464 ✓ I ✓ IA709 ✓ I 11 ✓ NB816 	A484 🗹 IA505 A738 🗹 IA767 🖉 NB921	☑ IA527 ☑ I ☑ IA797 ☑ I	A550 ☑ IA574 A827 ☑ IA856	IA598	✓ IA624
Individual image li	st Stacked in	nage list Indivi	dual and stacke	d image list		
	-30					-50 -40 -30
0 200 190	10		40 130	120 110	100 9	20 • • •
	20			••		10 20 [°] . +

Summary

- The Suprime-Cam Legacy Archive as processed the data from the Suprime-Cam camera
- Astrometric precision: 30 mas
- Photometric precision: 10-20 mmag
- Available data:
 - Calibrated individual images
 - Coadded images
- It is hoped that the SCLA will contribute to increase of the re-use of the Suprime-Cam data

