# Strong lensing searches with HSC

# Anupreeta More (IUCAA/IPMU)

On behalf of

Anton Jaelani Sherry Suyu Kenneth Wong James Chan Raoul Canameras Yiping Shu Masamune Oguri Dani Chao

Subaru Users Meeting, Jan 12, 2022

# Broader science goals of the HSC - Strong lensing studies

- Studying the stellar initial mass function (IMF) and dark matter fractions in galaxies
- Dark and total mass distributions in galaxy groups and clusters
- Quadruply lensed quasars to put constraints on Cosmology
- Lensed quasars to study Black hole and host galaxy properties

# New galaxy-scale lenses from HSC SSP DR4

### **Project Lead: Kenneth Wong**

- Search for galaxy-galaxy lenses in HSC SSP DR4 using YattaLens (Sonnenfeld+2018)
- YattaLens searches for extended blue objects around central galaxy (using HSC gri-band imaging)
- Simple lens model fit to imaging, compare residual with other image models (e.g., ring galaxy, extended foreground galaxy)



Grade A lens candidates

Wong et al. 2022 (in prep)

# New galaxy-scale lenses from HSC SSP DR4

- Preselection: LRGs from BOSS DR15
- Search conducted over nearly the entire HSC-Wide area
- Candidates graded by 8 independent experts
- Discovered
  - 43 grade A+B and
  - 138 grade C lens candidates from 0.2  $\lesssim z_L \lesssim 0.9$



# New galaxy-scale lenses from HSC SSP DR4





SC.1235853+012406

Grade B lens candidates

- Publication of new candidates shortly (Wong et al. 2022 in prep.)
- Follow-up spectroscopy to get source redshifts will enable detailed lens modeling for studies of galaxy structure and evolution

# Galaxy-scale lens search using CNN

Project Lead: Anton T. Jaelani

- Searching new galaxy-scale lenses in HSC SSP PDR2 using a Convolutional Neural Network
- Parent sample ≈ 2.3 million galaxies in HSC PDR2 Wide
  - $\circ$  0.2 <  $z_{phot}$  < 1.2
  - r\_cmodel\_mag a\_r < 28; i\_cmodel\_mag a\_i < 28; z\_cmodel\_mag a\_z < 23</li>
  - Stellar mass > 5 x  $10^{10} M_{\odot}$ ; SFR/Stellar mass < 1e-10
- Results: ≈ 21000 candidates with threshold > 0.9 (Jaelani et al. 2022 in prep.)
  - 226 grades A/B (52 are new discoveries) after visual inspections
  - and 995 grades C candidates after visual inspections

# Examples of Strong-Iens Candidates





Grades A

Grades B

# Status and Future plans

- About 90 candidates in our sample were assigned lower grades compared to other studies
  - E.g. lens sample on the right has grade B in Canameras et al. 2021
- Final sample is being compiled
- Lens modelling and follow-up spectroscopy to get source redshifts



(Jaelani et al. 2022 in prep.)

# High-redshift Strong-Iens Candidates from PDR2

**Project Lead: Yiping Shu** 

- Motivation: Extending strong lensing-assisted galaxy evolutionary studies (e.g. Bolton et al. 2012, Sonnenfeld et al. 2013) to earlier cosmic time
- □ Parent Sample: ≈ 5.4 million galaxies in HSC PDR2 Wide (≈ 960 deg<sup>2</sup>) with red colours

# 0.6 < g\_cmodel\_mag-r\_cmodel\_mag < 3.0 2.0 < g\_cmodel\_mag-i\_cmodel\_mag < 5.0</pre>

- □ Method: Strong-lens classifier constructed with deep residual networks
- Results:
  - $\square \approx 10,000$  candidates from the parent sample (~100 minutes)
  - 735 Grade-A/B strong-lens candidates after visual inspections, of which 277 are new discoveries (Shu et al. 2022, to be submitted)

# High-redshift Strong-lens Candidates from PDR2



# High-redshift Strong-lens Candidates from PDR2

- Single largest set of galaxy-scale stronglens candidates in the HSC footprint to date
- > 60% objects in our parent sample had not been classified by the SuGOHI project or Canameras et al. (2021)
- Nearly half (331/735) contain lens galaxies with z<sub>phot</sub> > 0.6
- A valuable target catalog for ongoing and scheduled spectroscopic surveys, such as PFS.



# HSC Lensed Quasar Search - Preselection

### **Project Lead: James Chan**



color cut: g - r < 1 r - z < 1 i - z < 0.75 z - y > -0.5 y - W1 > 2 y - W2 > 3 W1 - W2 > 0

# HSC Lensed Quasar Search

# New algorithm to identify multiple blue point sources:

 1.identify point sources
 2.estimate the colors
 3.separate into the blue/red group
 4.the number blue point sources from 2 to 5 → lens candidate

(see details in Chan et al. 2021)



### known lenses (gri) in HSC DR4 S21A



# HSC Lensed Quasar Search

Current status:

- 1. Applying the color cut in the HSC catalog (i<22)
- 2. Improving the algorithm to separate blue/red point sources

Future plan (after the classification of lens candidate):

- 1. Visual inspection: making use of existing data, such as SDSS spectra, GAIA information, etc.
- 2. Follow-up observations: spectroscopy, or high-resolution imaging.
- 3. Lens modeling

# Lensed quasar search using CNN via time variability

- Using the advantage of HSC transient survey to design/prepare a fast automatic lensed quasar search algorithm for the LSST
- Use the i-band difference images from the median-seeing epoch (2017 Feb. 25)
- Generate a training sample -
  - Mock lensed quasars (+): 2033
  - Non-lensed variables (-): 42279
- The only known quad in HSC to test: HSCJ095921+020638 (Anguita et al. 2009)

### **Project Lead: Dani Chao**



Non-lensed variable object (diff. Img. on Feb. 25 2017)



HSCJ095921+020638 (diff. Img on Feb. 25 2017)

# Lensed quasar search using CNN via time variability

- Two kinds of samples are generated :
  - equal proportions of lensed vs non-lensed objects (2033\*2) (closer to)
  - Realistic proportions (lensed=2033, non-lensed=42279)
  - Training:Validation:Test = 60:15:25

|           | Overall accuracy | Precision | Recall | F1 score | The known lensed quasar |
|-----------|------------------|-----------|--------|----------|-------------------------|
| Equal     | ~96.9%           | ~95.9%    | ~98%   | ~96%     | YES                     |
| Realistic | ~99.6%           | ~94.9%    | ~95.6% | ~95.2%   | NO                      |

# Lensed quasar search using CNN via time variability

## **Status and Future steps**

- Need to generate more mock lensed quasars in time series (difference images)
- Apply data augmentation
- Improve training of the CNN

# SuGOHI Lens Database

# http://www-utap.phys.s.u-tokyo.ac.jp/~oguri/sugohi/

### • Lens Candidates Query

Show list Reset

Output format: HTML csv Select grades: Grade A (definitely a lens) Grade B (probably a lens) Grade C (possibly a lens) Lens type: Galaxy scale Galaxy scale Source type: Galaxy source Quasar source Spectroscopy:

✓ W/ lens spec-z ✓ No lens spec-z ✓ W/ source spec-z ✓ No source spec-z

Combine with positional constraints:

• Rectangular search:

ra range: from 0.0 to 360.0 dec range: from -00 0 to 00 0

| Cutout  | Name              | RA          | Dec         | z <sub>lens</sub> | Z <sub>source</sub> | Lens type<br>(GG: galaxy-<br>galaxy; GQ:<br>galaxy-quasar;<br>CG:<br>Cluster/group-<br>galaxy; CQ:<br>Cluster/group-<br>quasar) | Discovery (V:<br>visual<br>inspection; Y:<br>YattaLens; C:<br>Chitah; E:<br>emission line;<br>K: known; S:<br>serendipitous) | Grade (A:<br>definite lens;<br>B: probable<br>lens; C:<br>possible lens) |
|---------|-------------------|-------------|-------------|-------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|         | HSCJ000129-000241 | 00:01:29.64 | -00:02:41.6 | <u>0.247</u>      | -99.000             | CG                                                                                                                              | v                                                                                                                            | С                                                                        |
|         | HSCJ000300+005337 | 00:03:00.00 | +00:53:37.7 | <u>-99.000</u>    | -99.000             | GG                                                                                                                              | v                                                                                                                            | С                                                                        |
|         | HSCJ000313+005425 | 00:03:13.08 | +00:54:25.2 | <u>-99.000</u>    | -99.000             | CG                                                                                                                              | v                                                                                                                            | В                                                                        |
| • • • • | HSCJ000451-010316 | 00:04:51.84 | -01:03:16.6 | <u>-99.000</u>    | -99.000             | CG                                                                                                                              | v                                                                                                                            | А                                                                        |
|         |                   |             |             |                   |                     |                                                                                                                                 |                                                                                                                              |                                                                          |