

Uchiyama et al. 2021, accepted in ApJ, arXiv: 2112.01684 Uchiyama et al. 2022, to be submitted

A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). Statistical Characterization of Radio Galaxy Environments

Hisakazu Uchiyama Ehime University

Collaborators

Takuji Yamashita, Jun Toshikawa, Nobunari Kashikawa, Kohei Ichikawa, Mariko Kubo, Kei Ito, Nozomu Kawakatu, Tohru Nagao, Yoshiki Toba, Yoshiaki Ono, Yuichi Harikane, Masatoshi Imanishi, Masaru Kajisawa, Chien-Hsiu Lee, Yongming Liang, Shogo Ishikawa, Toshihiro Kawaguchi, Akatoki Noboriguchi, and WERGS members

Radio galaxy and galaxy formation/evolution

 Radio Galaxy (RG) : AGN launching radio jet/lobe

 Radio jets suppress gas cooling and thus star formation (e.g., Izquierdo-Villalba+18)

 Radio jets can extend to >1 Mpc (e.g., Jamrozy+14)

→ suppress star formation in not only the host galaxies but also the surrounding halos

In order to understand galaxy formation/evolution, we need to understand where RGs appear/live.

Radio galaxy live in overdense region ?

RGs are expected to appear in galaxy overdense regions or (proto)clusters preferentially ?

Previous studies and this study

	z < 0.3	z > 0.3
Population massive elliptical (e.g., Kron+85) proportion of radio galaxies hosted by less massive SFGs increase with redshift (Donoso+09, Delvecchio+18) We statistically characterize the RG environments at z>0.3 based on HSC-SSP		
Environment	rich clusters overdense regions (e.g., Venturi+07)	 Kolwa+18 : SDSS ripe 82 bias toward may be gals M* > 1e11 M* 1 Malavasi+15 : COSMOS lack of statis al sample

Data and method

Data

Radio galaxies

- extract from WERGS (A Wide and Deep Exploration of Radio Galaxies with Subaru HSC ; Yamashita+18)
- WERGS is the very wide optical counter part survey (154 sq. deg) of radio galaxies with the optical depth down to i~26 based on HSC-SSP and FIRST data.
 - \rightarrow 2,170 radio galaxies at photometric redshift (Mizuki; Tanaka+18) z = 0.3-1.4

Control galaxies

- photo-z galaxies (Tanaka+18) covering similar M_* and z but w/o radio detection.

Method

k-Nearest Neighbor method

$$1 + \delta_{\rm RG/control}^{k} \equiv \frac{\Sigma_{\rm RG/control}^{k}}{\left\langle \Sigma_{\rm Field}^{k} \right\rangle}$$
$$\Sigma_{\rm RG/control}^{k} \equiv \frac{k+1}{\pi d_{k}^{2}C} \ \rm pkpc^{-2}$$

- *d*k : projected distance to *k*-th nearest photo-*z* galaxy
- C : percentage of the area within radius *d*k that is not masked.
- $\langle \Sigma_{\text{Field}}^{N=k} \rangle$: average value of estimated for each photo-z galaxy within the redshift error of the relevant RG/control.

Result (1) redshift vs environment

 \rightarrow RGs tend to avoid the most overdense regions at high-z

the population of less-massive RGs increase with redshift (e.g., Donoso+09)

(In fact, we find that the stellar masses of RGs decrease with redshift.)

- smaller k, larger enhance
 - → related to short scale physics

Result (2) stellar mass vs environment

Discussion: Triggering of radio galaxy and **Role of the local environment**

- The major merger scale is <70 pkpc (Larson+16)
- pair fraction $f_{\text{pair}}(M_*) = n_{d < 70}(M_*)/n_{\text{tot}}(M_*)$ numerator : # of RG/control with d_{k=1}<70 pkpc denominator : total # of RG/control
- \rightarrow Implication : massive-end radio galaxies are likely to be associated with mergers
- We also find that the local densities of RGs are negative correlated with the black hole accretion rates (sBHAR; Toba+19, Ichikawa+21).

These findings are consistent with a scenario: massive RGs have already matured at z = 0.3-1.4 through galaxy mergers in the past, while less-massive RGs undergo active accretion just at this epoch by avoiding past mergers (e.g., Bower+17, Habouzit+17, Ichikawa+21).

Environments of high-z RGs at z~4

We statistically characterize the environments of high-z radio galaxies (HzRGs) at z~4 by using galaxy surface density of g-dropout galaxies, based on HSC-SSP.

Uchiyama et al. 2021, accepted in ApJ arXiv: 2112.01684

- Surface density catalog (Toshikawa+18) they select g-dropout galaxies in the Wide layer of S16A DR, and make galaxy surface density map
- HzRGs (T. Yamashita et al., in prep.)
 Matching g-dropouts (Ono+18) with FIRST
 → 21 HzRGs + 5 RLQSOs candidates

Dependency of overdensity on radio luminosity

- The surface densities around HzRGs are anti-correlated with their radio luminosities.

- In the radio-luminous regime (log L_{1.4GHz} /(W/Hz) > 26.5), there are no significant difference between the densities around the HzRGs and the g-dropouts,
- at log L_{1.4GHz} /(W/Hz) <26.5, HzRGs tend to reside in the denser regions than g-dropouts.

ZRG Halo mass from clustering analysis

- The HzRGs are found to occupy more massive halos than g-dropout galaxies.
- This trend is more pronounced in the faint HzRGs.

Discussion: luminosity dependency

The densities/halo masses of our HzRGs are anti-correlated with their radio luminosities.

 \rightarrow Our result is consistent with the scenario (e.g., Donoso+10) Radio galaxies get younger and less massive as the radio-luminosity increases.

- at log L>25.3, the clustering strength of RLAGNs are anti-correlated with their radio luminosities
 - → explained from the fact that the most luminous RGs are mostly classified into high-excitation RGs (HERGs) (e.g., Jackson&Wall+99)

- \rightarrow Our result is consistent with the scenario.
- → HzRGs get older and more massive as the radio-luminosity decreases.

Companion alignment

- isotropy parameter, f(r) = N_{<30} (r)/ N_{>60} (r) (e.g., Bornancini+06)
- $N_{<30}$ (r) and $N_{>60}$ (r): the number of galaxies with $\Delta \phi < 30$ and $\Delta \phi > 60$ deg within the projected radius of r arcmin centered on a HzRG $\Delta \phi$: the orientation of the galaxies for the radio major axis of a HzRG

 At r<400 pkpc, the surrounding galaxies tend to distribute along the radio major axis of the faint HzRGs.

 \rightarrow Our findings imply the onset of the filamentary structures around HzRGs at $z \sim 4$

Summary

We statistically characterize the RG environments at z=0.3-1.4, based on HSC-SSP.

- RGs tend to avoid the most overdense regions at high-z
 - \rightarrow consistent with the scenario where the population of less-massive RGs increase with z
- We found that at log M < 11, the radio galaxies reside in the same density regions as controls, while, the radio galaxies reside in higher density regions compared to controls at log M > 11.
- In the case of k=1, this trend is more pronounced.
 - \rightarrow consistent with a scenario: massive RGs have already matured at *z* = 0.3-1.4 through galaxy mergers in the past, while less-massive RGs undergo active accretion just at this epoch by avoiding past mergers.

We statistically characterize the environments of high-z radio galaxies HzRGs at z~4 by using galaxy surface density of g-dropout galaxies, based on HSC-SSP.

- We found that the surface densities and halo masses of HzRGs are anti-correlated with their radio luminosities.
- \rightarrow HzRGs get older and more massive as the radio luminosity decreases.
- At r<400 pkpc, the surrounding galaxies tend to distribute along the radio major axis of the faint HzRGs.
- \rightarrow Our findings imply the onset of the filamentary structures around HzRGs at z ~ 4