AGN Activity of Massive Quiescent Galaxies to z~5 Revealed by X-ray and Radio Stacking

Kei Ito (NAOJ/SOKENDAI D3), Masayuki Tanaka, Takamitsu Miyaji, Olivier Ilbert, Olivier Kauffmann, Anton Koekemoer, Stefano Marchesi, Marko Shuntov, Sune Toft, Francesco Valentino, and John Weaver

A I

Massive Quiescent Galaxies at high redshift

- Star formation of massive elliptical galaxies is suppressed (quenching)
- Quiescent galaxies (QGs) are now spec-z confirmed up to z~4
- They have intense star formation and suddenly quench at z>4.
 →What is the mechanism for quenching?

High-z QGs and AGNs

- AGN feedback is one of preferable quenching process
- Several observational studies connecting high-z QGs and AGNs
 - Stacking analysis revealed enhanced X-ray/radio luminosity at z~2
 → Indicating the existence of AGNs?
 - Several reports of X-ray luminous QGs at z~3-4

Current problems and this work

- Current Problems for this topic
 - Average picture of z>2 QG is not well understood \rightarrow Is high X-ray/radio luminosity seen even at z>2?
 - We have to compare QGs' AGN luminosity to SFGs \rightarrow Is QGs' AGN more active than those of SFGs?
- What we need is
 - more QG sample at high redshift (i.e., wider field)
 - wide X-ray/radio survey

COSMOS2020

- COSMOS2020: Latest catalog in the COSMOS field (~2deg²)
 - Including the latest survey (CLAUDS, **HSC-SSP**, SPLASH, etc...)
- Quiescent Galaxies: sSFR is I dex lower than main sequence
- Individually X-ray detected sources are excluded
 ←Not to affect the entire properties

X-ray/radio Luminosity of QGs

- Intrinsic rest 2-10keV and 1.4GHz luminosity is derived.
- Not only AGNs, but also X-ray binaries/SFR can contribute durationsity = = → What is the origin of the luminosity?

AGN X-ray/radio luminosity of QGs

- AGN X-ray/radio luminosity is estimated as the excess of the observed luminosity to the expected XRB/SFR luminosity.
- QGs have higher AGN luminosity than SFGs
 →AGNs are more active in QGs than in SFGs

X-ray AGN luminosity

- QGs have systematically higher AGN luminosity than SFGs at z>1.5.
- There is no significant difference at z<1.5.
 →Quenching at high redshift is related to the AGN activity?

Radio AGN luminosity

- QGs have systematically higher AGN luminosity than SFGs at z>1.5.
- There is no significant difference at z<1.5.
 →Quenching at high redshift is related to the AGN activity?

Quenching and AGNs

- Observed X-ray/radio luminosity is higher than star-related luminosity
 →QGs posses low-luminosity AGNs up to z~5 in general
- X-ray/radio AGN luminosity is higher in QGs at z>1.5. → "Radio-mode feedback" is occurring? (:: low-luminosity $L_X \sim 10^{42}$ erg/s)
- Insignificant luminosity difference at z<1.5
 →Different quenching mechanism gets dominant?

e.g., environmental quenching at z<2 (Kawinwanichakij+17)

What causes quenching in massive galaxies?

