## W. M. Keck Observatory 2022

#### Subaru Users' Meeting

Hilton Lewis, Director January 10, 2022

# Science Highlights

#### Science Highlight #1: Electron Capture Supernova

- Candidate for a new class of supernova: an electron capture supernova
- Predicted by Ken'ichi Nomoto, University of Tokyo in 1980
- Keck LRIS & DEIMOS spectra taken years after the explosion in 2018
- Provides evidence that the supernova responsible for the Crab nebula is of this type



Science Highlight #2: SN 2020 tlf: Observing a red giant in its last 130 days of existence

- Team conducting the Young Supernova Experiment (YSE) transient survey observed the red supergiant during its last 130 days of its existence.
- Pan-STARRS detected the excess radiation in summer 2020 of 2020tlf. Supernova detected in fall of 2020.
- Keck obtained first spectrum of SN 2020tlf, using LRIS.
  Follow-up observations conducted with DEIMOS and NIRES determined SN 2020tlf's 10 solar mass progenitor red supergiant, located in NGC 5731, about 120 million light-years away.
- Provides direct evidence of circumstellar material surrounding the star at the time of explosion.



#### Public Talks: Year to date

- Marla Geha, "Dwarf Galaxies, Dark Matter, and the Milky Way", January 14, 2021
- John O'Meara, "A night in the life of Keck Observatory", February 11, 2021
- David Ciardi, "Kepler, TESS, and Keck: Driving our Understanding of Exoplanetary Systems, March 4, 2021



- Alice Shapley, "Decoding the Contents of Distant Galaxies", June 17, 2021
- Mansi Kasliwal, "Cosmic Fireworks", July 20, 2021
- Lauren Corlies, "Exploring Galaxies and Beyond", August 19, 2021
- Steven Finkelstein, "Lifting the Fog on the Early Universe", September 21, 2021
- Christine Moran, "Where I explore, where we explore: from the South Pole to Mars to exoplanets", October 19, 2021
- Mike Brown, "Planet 9 from Outer Space", November 3, 2021

## Performance Metrics

#### Scientific Performance 2015-2019, updated 2021

Overall Performance



The size of the circle gives the total papers per telescope in 2015-2019

Darker color of the circles represents the fraction of papers in the top 10% of cited papers in the sample

#### 12 Month Metrics





## Infrastructure

#### K1 Pier Repair

- Concern: Excessive deflections on K1 azimuth pier related to oil penetration
- Work performed to date
  - K1: Remove drywall; Extracted concrete core test samples; Determined level of concrete damage.
  - K2: 3 locations of deflection found, one repairable but lower priority than K1 (others are stable, not a performance issue)
  - Redesigned oil return tray concept generated
- Outside expertise: CTL (Construction Technology Laboratories) & JPL
  - Although oil saturated, the <u>concrete has adequate strength</u>.
  - Deflections believed to be result of failing bond lines journal to grout and grout to concrete the "fracking" failure mode mostly occurs here.
  - A grout focused repair should be possible (echoes JPL approach on 70m Deep Space Network antennae)
  - Switch from a cementitious grout to an epoxy grout (oil resistant)
- Degradation expected to continue in a predictable fashion
  - No sudden changes => <u>low risk to Operation</u>



#### **Tertiary Mirror Repair**

- Support design similar to segments  $\rightarrow$  similar damage at bonds
- Repaired Keck I tertiary mirror using procedures adapted from segment repair but with tighter tolerances because tertiary mirrors have no active adjustments
- Installed Keck I tertiary mirror in Keck II
  - Earthquake as mirror was being lifted from telescope
- Keck II tertiary mirror to be repaired as spare
- for Keck 1 (have a deployable tertiary on K1)











January 10, 2022

#### Remote Observing

- Remote sites at campuses and HQ use has plummeted (not unexpected during COVID)
- Laptop-centered 'Pajama mode' is the way of (much of) the future. Mixed blessing:
  - Decouples us from our observers
  - Allows more to participate in observing
- Important issue: How do we maintain our highly-valued and close connection with our community while recognizing the march of technology towards virtual interaction?

## Major New Instrumentation

#### KCRM: Undergoing Lab integration

- Red channel to be integrated into KCWI: 530nm-1050nm
- Complements blue channel (350nm – 560nm)
- Delivery planned for Summer 2022



#### KCRM: Dichroic & FM2

• World's largest dichroic bonded in the lab.





#### **KPF:** Final lab Integration in progress



January 10, 2022

Subaru Users' Meeting Jan 2022

#### KPF: Bench touchdown

- Delivery planned in the spring
- Shared risk observing starts in semester 2022B





### HISPEC: High-resolution Infrared Spectrograph For Exoplanet Characterization

- To detect and characterize Wavelength Range: 14,900 – 24,600 Å 540 mm exoplanets Echelle Blaze Angle ( $\theta_{\rm B}$ ): 76° Echelle ruling density (v): 13 lpmm Pixel Size: 10 µm • AO fed, high Sampling: 2.9 – 4.8 pix Spectral Resolution (R): 90K - 150K TMA3 Linear Dispersion  $(d\lambda/dx)$ : ~0.05 Å/pix contrast, 1-CAM Collimator Focal Length: 112 mm BENCH H4RG Camera Focal Length: 550 mm  $2.5\mu, R > 100,000$ Aperture Stop Dia.: 28 mm N Fibers: 4 TMA2 • Used with laser Echelle Layout on H4RG FOLD frequency comb • In preliminary design TMA3 COL BENCH Most funding GRATING secured
- Delivery in 4-5 years

#### SCALES: Opto-mechanical designs

- To detect and characterize directly imaged exoplanets
- 2-5μ AO fed integral field spectrograph, 2.2 arcsec field, R ~ 50-300 and an image slicer R ~ 5,000, 3.6 arcsec field
- Preliminary design underway ٠





19

#### Laser Frequency Comb

Frequency reference for precision radial velocity measurements initially for NIRSPEC (existing) and HISPEC (delivered in 4-5 years)

**Technical Progress** 

- 70% of the equipment is purchased or in the queue with parts arriving in the lab at Caltech
- Basement location being prepared, hardware is being procured and utilities are being installed

Schedule:

• Expect to deliver in Spring 2022, with installation in the summer

#### Other Instrumentation Programs in Progress

#### KAPA – AO laser tomography system

- Includes new realtime controllers
- Initial science usage is also funded

KPIC – Keck Planet Imager and Characterizer

 New vortex coronagraphic masks, infrared pyramid sensor and fiber injection unit for NIRSPEC

#### Data Services Initiative

 Provide data which is useful, usable, and quick

#### Instrumentation Ecosystems

- When complete, KPF, HISPEC, SCALES and the laser frequency comb will complete our planned suite of exoplanet instrumentation
- Discovery Engine: Optical wide field imaging and spectroscopy down to atmospheric UV cutoff
  - Wide field imager 1° diameter FoV, 300-1,000 $\mu$  deployed at primary behind a deployable secondary
  - FOBOS: moderate resolution optical spectrograph, 1800 fiber , 45 fiber bundles over 20 arcmin FOV, 0.31-1μ, at R=3500





# Looking forward to the ELT era

 Preliminary design funded; draws on IRIS design heritage

- Not funded for construction yet
- Leading to IRIS/TMT

• Preliminary design will complete this year

- Funding path identified
- Leading to MODUS/TMT



LIGER

HISPEC

## The mission of the W. M. Keck Observatory is to advance the frontiers of astronomy and share our discoveries with the world.

## Astro2020

#### Astro2020 offers significant opportunities for Keck

- Selection of an exoplanet/robust astrophysics flagship enables both precursor science programs at Keck and opportunities for technology development
- Augmentation of midscale programs provides opportunity to apply for instrument funding at the appropriate scale. A good example is FOBOS given its overlap with the strategic areas in the report.
- Highlights on data pipelines and archives for ground-based facilities provide opportunity for DSI funding growth
- The science pillars are Keck science strengths
- Calls for improved relations with indigenous populations mirror the approach being taken at keck