P33: Tracing the origin of the Moving Group: LAMOST-N1

Zhao J.K., Zhao G., Shi J.R., Xing Q.F., Chen Y.Q., Liang X.L.: Key Lab of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, People's Republic 11 of China, zjk@nao.cas.cn Aoki W., Ishigaki M. N., Matsuno T.: National Astronomical Observatory of Japan (NAOJ), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Suda T: The Open University of Japan, Wakaba 2-11, Mihama-ku, Chiba 261-8586, Japan

Abstract:

[<Mg,Ca>/Fe]

We present the chemical abundances of six stars in the halo stream Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)-N1, a new kinematically selected substructure from LAMOST data, from high-resolution spectra obtained with the Subaru/High Dispersion Spectrograph. Atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 11 elements, including α elements (Mg, Ca, Ti), odd-Z light elements (Na), iron-peak elements (Sc, Cr, Mn, Fe, Ni), and neutron-capture elements (Y, Ba), are measured by local thermodynamic equilibrium analysis procedures. [Fe/H] of the six stars ranges from -1.5 to -0.66. The abundance patterns of α elements show a similar trend to those of low-α stars in Nissen et al. and over 0.1 dex lower than those of Galactic field stars. The Sc, Cr, Mn, and Ni abundances of these six stars exhibit a positive trend with increasing iron abundance, with varying gradients. In addition, abundance distribution between [Na/Fe] and [Ni/Fe] and between that of [Ba/Y] and [Fe/H] of these six stars is different from both Galactic stars and the known dwarf galaxies. Our results suggest that LAMOST-N1 might be a relic of a system with slower chemical evolutions than the Milky Way.

ID	R.A. (degree)	Decl. (degree)	<i>r</i> ₀	S/N^{a}	Date	RV (km s ⁻¹)	eRV (km s ⁻¹)
J0054+3047	13.503481	30.797329	14.2261	40	2016 Nov 18	-169.05	0.19
J0147+2742	26.861045	27.705449	14.4878	35	2016 Nov 18	-198.85	0.41
J2158+2840	329.585999	28.675182	13.9799	38	2016 Nov 18	-196.05	0.29
J2350+2622	357.5523	26.37558	14.6732	34	2016 Nov 18	-174.64	0.17
J1218+2852	184.632775	28.868973	13.9921	52	2017 Feb 16	85.8	0.14
J1046+5004	161.522975	50.067471	14.5725	45	2017 Feb 16	65.08	0.27

Basic Parameters of the Six Stars and the Subaru/HDS Observation

Stellar Parameters of the Six Stars

ID	T _{eff} _lasp (K)	log g_lasp	[Fe/H]_lasp	T _{eff} _spa (K)	log g_spa	[Fe/H]_spa	$\frac{\xi_t}{(\mathrm{km}~\mathrm{s}^{-1})}$
J0054+3047	5794	4.286	-1.287	5753	4.80	-1.34	0.7
J0147+2742	5937	4.22	-1.417	5862	4.01	-1.48	1.3
J2158+2840	5667	4.23	-1.074	5745	4.73	-1.00	0.9
J2350+2622	6119	4.254	-0.938	6036	3.95	-1.14	1.9
J1218+2852	6041	4.15	-0.922	5999	4.15	-0.95	1.5
J1046+5004	5703	4.408	-0.783	5899	4.91	-0.66	1.0

Toomre diagram for stars in Zhao et al. (2015). Diamonds represent the 35 member candidates in LAMOST-N1. The long-dashed line corresponds to Vtotal = 180 km/s.

Top: [Sc/Fe] vs. [Fe/H], middle: [Cr/Fe] vs. [Fe/H], and bottom:

magenta diamonds represent the halo stars with low- α from Nis10. Stars of the dwarf galaxies are shown with triangles. Dwarf galaxies are distinguished by different colors.

Conclusion:

1. The abundance distributions of $[\alpha/Fe]$ versus [Fe/H], [Na/Fe] versus [Ni/Fe], and [Ba/Y] versus [Fe/H] of LAMOST-N1 are very similar to low- α halo stars of Nissen & Schuster (2010)

2. [Ba/Y] of LAMOST-N1 is higher than Galactic field stars (~0.2dex)

3. the LAMOST-N1 might be an accreted population of halo stars, formed in conditions similar to those in early dwarf galaxy satellites.

4. The progenitor of LAMOST-N1 might originate from systems with a slower chemical evolution, characterized by additional enrichment from Type Ia supernovae and low-mass AGB stars.

Acknowledge:

This work is supported by the National Natural Science Foundation of China under grant No. 11390371, 11573035, 11625313, and the National Key Basic Research Program of China (973 program) 2014CB845701/03. Guoshoujing Telescope (LAMOST) is a National Major Scientific Project built by the Chinese Academy of Sciences. Funding for the project has been provided by the National Development and Reform Commission.

LAMOST is operated and managed by the National Astronomical Observatories, Chinese Academy of Sciences.