

FIRST, a Pupil-Remapping Fiber Interferometer at the Subaru Telescope

Sébastien Vievard (NAOJ), Elsa Huby (LESIA - Obs. de Paris),

Nick Cvetojevic (Obs. de la Côte d'Azur), Sylvestre Lacour (LESIA - Obs. de Paris), Kevin Barjot (LESIA – Obs. De Paris), Guillermo Martin (IPAG), Olivier Guyon (NAOJ), Julien Lozi (NAOJ), V. Deo (NAOJ),), Takayuki Kotani (NAOJ), Nemanja Jovanovic (Caltech), Franck Marchis (SETI), Gaspard Duchêne (UC Berkeley), Vincent Lapeyrere (LESIA – Obs. De Paris), Daniel Rouan (LESIA – Obs. De Paris), Guy Perrin (LESIA - Observatoire de Paris),

Context: High contrast imaging at high angular resolution

> Scientific goals: detection and characterization of faint companions such as exoplanets around their host star + characterization of Giant star surfaces

- > Requirements:
 - \rightarrow High angular resolution
 - \rightarrow High contrast
- > Challenge: Turbulent atmosphere spoils telescope performance

> Solutions:

 \rightarrow Adaptive Optics (AO): allows to reach diffraction limit <u>BUT</u> residual speckle noise limits contrast

 \rightarrow Speckle interferometry: allows to reach diffraction limit <u>BUT</u> contrast limited to ~100

 \rightarrow Aperture masking: retrieve highest spatial frequency information of the pupil with contrast ~10⁻³ <u>BUT</u> sacrifice of a large percentage of the full pupil + speckle noise over each sub-pupil

 \rightarrow New solution proposed: Pupil remapping combined with the use of single-mode fibers

Pupil remapping with single-mode fibers

• **Pupil remapping** is applying the aperture masking technique on the whole pupil thanks to single-mode fibers (A) • The use of **single-mode fibers** allows to remove speckle noise over each sub-pupil (*B*)

- The fiber outputs are rearranged in a **non-redundant configuration**. Each pair of sub-pupils have an independent phase and contrast (C)
- Interferometric fringes are spectrally dispersed and deliver measurements below the telescope diffraction limit (D)

-> Fibered Imager for a Single Telescope (FIRST) is a module of the Subaru Coronographic Extreme Adaptive Optics (SCExAO)

- Capella binary system observed over 2 days with the Subaru telescope
- > Both position estimation match with the orbit and predicted **position** (from *Torres et al, 2015*)

 $\succ \alpha$ Equ is a spectroscopic binary – R_{mag}=3.5 ⁺/₋ ~0.8mag

 \succ Measured separation: 10.1 +/.0.1 mas (exp. 11 mas) \rightarrow 0.6 λ /D

Preliminary spectrum modeling also leads to consistent estimation of the effective temperature (analysis lead by G. Duchêne)

Model parameters:

angular separation

spectral flux ratio

Fiber path length matching with delay lines **(B'**)

ExAO system allows FIRST to

exposure times (>10 sec)

acquire stable fringes with **long**

→ current magnitude limit = 6.6

Active Integrated optics (IO) chip (C') with new recombination scheme and fast phase

FIRST : WAVEFRONT SENSING CAPABILITIES (under development)

- Single telescope interferometers sample the pupil and allow relative measurements between the sub-pupils
- Coupled with a spectrometer, possibility to have these measurements as a function of the wavelength
- Critical for fragmented (or segmented) pupils \rightarrow Tackle down the Island Effect caused by the spiders \rightarrow **Co-phasing** of segmented telescopes
- > On FIRST, use the baseline complex coherence (currently) not used to compute the Closure phase) to retrieve the sub-

Sampling of the Subaru pupil Injection into single-mode fibers using a micro-lens array

 → New science goal : protoplanet detection and characterization 	Input V-groove (9 fibers) Silica Y-junction splitters each input split into 8 Wave Guides (WG) (72 inputs - (72 total)	Output V-groove (36 fibers) combining chip → 36 outputs)	 > Unique instrument with science and wavefront sensing capabilities 	terms estimation V2PM method Sub-aperture differential piston
Conclusion + Perspectives			Relevant references	
 FIRST at Subaru : pupil remapping for detection and characterization of faint companions On-sky results : detection of companions even well below the telescope diffraction limit Many upgrades to come for phase stabilization and enable new science cases Investigations to use FIRST as a wavefront sensor. 			 G. Perrin et al., High dynamic range imaging by pupil single-mode filtering and remapping, <i>MNRA, 2006</i> S. Lacour et al., High dynamic range imaging with a single-mode pupil remapping system: a self-calibration algorithm for redundant interferometric arrays, <i>MNRA, 2007</i> E. Huby et al., FIRST, a fibered aperture masking instrument. I. First on-sky results, <i>A&A, 2012</i> E. Huby et al., FIRST, a fibered aperture masking instrument. II. Spectroscopy of the Capella binary system at the diffraction limit, <i>A&A, 2013</i> S. Vievard et al., FIRST, a Pupil-Remapping Fiber Interferometer at the Subaru Telescope: on-sky results, <i>arXiv:2012.12416</i> (2020) 	