

SCExAO: Status of the Instrument, testbed and system-level demonstrator for PSI

Julien Lozi, Olivier Guyon, Sebastien Vievard, Vincent Deo, K. Ahn, N. Skaf, N. Jovanovic, B. Norris, B. Mazin, A. Walter, N. Fruitwala, S. Steiger, P. Tuthill, T. Kudo, H. Kawahara, T. Kotani, A. Sahoo, M. Ireland, N. Cvetojevic, E. Huby, S. Lacour, T. D. Groff, J. Chilcote, J. Kasdin, F. Martinache, R. Laugier, J. Knight, S. Bos, F. Snik, D. Doelman, E. Bendek, R. Belikov, T. Currie, Y. Minowa, C. Clergeon, N. Takato, M. Tamura, J. Zhang, H. Takami, M. Hayashi

SCExAO: Subaru Coronagraphic Extreme Adaptive Optics

High-contrast PI instrument installed on the IR Nasmyth

platform of the Subaru Telescope.

Very modular design that enables testing of new technologies necessary for future high-contrast imagers as a laboratory testbed.

But it is also an instrument used on-sky to perform competitive science.

AO188

Subaru Users Meeting 2021

ADC

Common 188 actuator DM

The "classical" high-contrast imaging modes

- Visible PyWFS (800-900 nm)
- 1200 controlled modes
- 1-3.5 kHz loop speed
- ExAO R-mag limit: 9-10
- Some correction down to R-mag ~14
- Strehl ratios > 90% with good seeing

🗲 See Presentation o37 (T. Currie)

Subaru Users Meeting 2021

3/2-3/5/2021

Intensity

0.1

0.01

Major Science Objective: Spectral characterization of Exoplanets, Disks, Brown dwarfs

- 2.07"x2.07" FOV
- LOW RESOLUTION MODE:
 - R~19, J+H+K Band
 - 65-70% instrument throughput
 - 10-15% from atmosphere to detector

HIGH RESOLUTION MODE:

- R~70-90: J, H, and K Bands
- 55-60% instrument throughput
- ~15% from atmosphere to detector

Exoplanet / Brown Dwarf Characterization SCEXAO

SCE AO Protoplanetary / Debris Disk Characterization

HD 15115 (Kwon et al. 2018) Some evidence for brightness asymmetry at small separations; spatially-resolved spectrum

- LkCa15 (Currie et al. 2019)
 - Non-detection of the
 - potential planets
- See Poster p13 (K. Lawson) & p30 (T. Uyama)

HD 36546 (Currie et al. 2017)HIP 79977 (Goebel et al. 2018)Direct Imaging Discovery of a LuminousStrongly forward—scattering dust from
a 60 au belt, neutral to blue disk colors

3/2-3/5/2021

SCE AO Other high-resolution science

SCE AO REACH: Hi-Contrast Hi-Res Spectroscopy with IRD

REACH connects the high-contrast imaging capabilities of SCExAO with the high-resolution spectrograph IRD (y- to H-band, R = 100,000).

A multi-core fiber is placed such as one core is aligned on the planet, the other cores sample only residual starlight. The mode is now available for science observations.

See Talk o34 (H. Kawahara)) & Poster p11 (T. Kotani)

Post-coronagraphic injection of companion light into a single-mode fiber feeding a high-resolution spectrograph

High-dispersion spectra of HIP18413 host star A and companion D obtained during engineering on-sky tests (without coronagraph)

SCE AO Polarimetry in Visible: VAMPIRES

- VAMPIRES is a visible PDI module, that can be combined with aperture masking interferometry.
- It operates from 600-800 nm and allow for sub-diffraction limited imaging of post AGB stars and disks with full polarimetric information.
- The instrument showed that the 3 levels of polarisation calibration can achieve exquisite normalised visibilities with σ~0.17°!
- A new H-alpha SDI mode is now available.

Subaru Users Meeting 2021

150

0.005

-0.005 -0.010 -0.015 -0.020

-0.025

3/2-3/5/2021

SCE AO Spectro-Polarimetry in IR with CHARIS

- A new spectro-polarimetric mode with CHARIS is now available, by adding a Wollaston prism before CHARIS (FoV reduced to 1x2 arcsec).
- The spectro-polarimetric mode can measure the fractional polarization signal at the different wavelengths between J and K, and characterize dust grain populations in disks.
 See Poster p13 (K. Lawson)

(Feb. 2018, work in progress) Subaru Users Meeting 2021

SCE AO NEW! Fast-IR Polarimetry Open for Science

- A fast PDI mode, similar to VAMPIRES in visible, was added using a Wollaston prism (identical to the CHARIS Wollaston) and a Ferroelectric Liquid Crystal (FLC) for a fast modulation of the polarization.A C-RED ONE camera was purchased for that purpose, and was installed in 2020. Testing was first done with the internal C-RED 2 camera, then the C-RED ONE.
- A raw contrast curve was calculated using only one minute of data on the unpolarized standard star psiO1 Aqr, showing that we achieve ~1e-4 raw contrast at ~0.15 arcsec separations, before double-differential processing. The contrast for stokes Q and U were also calculated, showing that we achieve a contrast of a few 1e-6 at 0.15 arcsec with double-differential processing. The addition of a third differential processing using the FLC should improve this further.

3/2-3/5/2021

Subaru Users Meeting 2021

SCE AO NEW! MEC Open for Science

- MKID Exoplanet Camera (MEC) is a innovative type of noiseless photon-counting detector that can measure each photon's arrival and energy. We can do spectroscopy without a dispersive element!
- A pipeline was developed for data processing, looking at the arrival statistics of photons: the Stochastic Speckle Discrimination (SSD) method.
- See Poster p22 (S. Steiger)

MEC 20k-pixel detector and datacube taken on-sky 3/2-3/5/2021

SCExAO : a host testbed for remote collaborators

- To use SCExAO, day or night:
 - Contact us for remote access (VPN)
 - Get trained to operate what you need
 - Coordinate use with other users (slack channel, Google calendar)
- The instrument is nearly always online (24/7), routinely used by collaborators (few hrs/day on average).
- SCExAO support team ready to assist.
 Based in Hilo, ~1.5hr drive from instrument @ Summit
- When you are ready, test on-sky. SCExAO has ~7 nights of engineering per yr.

3/2-3/5/2021

Software: MILK & CACAO

Unified architecture for SCExAO and AO188 RTCs

Long running development and collaboration - flexible and modular and open-source

- **Hardware side:** now CPUs, GPUs, expand to FPGAs, etc... abstracting the architecture
- Software side: manage async flows, multirate, many-sensors, telemetry, ... with ease and agility

MILK: Modular Image processing Library toolkit

Data structures, basic IO, arithmetic, data processing, etc

CACAO: Compute and Control for Adaptive Optics

The smart RTC : AO loops, control, predictive, adaptive, fancy stuff, ... neural nets soon ?

Processes perform data processing on CACAO RTCs

pindexSelect	ted = 1											
[PID 16514	SCAN	TID 16514] 40 cpus 15	process	es	tracked Di	isplay Mode 2						
[h] Help	[F2] CT	RL [F3] Resources [F4	1] Timin	g	[F5] htop (F	10 to exit) [F6] iotop (q t	pexit) [F7] atop (q to ex	it)			
Display frequ = 32 Hz [17] fscan= 0.99 Hz (1.00 Hz 0.78 % busy)												
Source Code: /home/scexao/src/cacao/src/COREMOD_memory/COREMOD_memory.c line 6860 (function COREMOD_MEMORY_image_NETWORKtransmit)												
STATUS	PID	pname	state	C#	tstart	tmux sess	loopcnt	Description	Message			
CRASHED	43893	ntw-tx-ircam0	RUN	CB	05:31:23.340	sTCPtx-ircam0	0335513833	ircam0->10.20.20.2/30101	Driving sem to 0			
ACTIVE	04084	ntw-tx-dm00disp00	TERM	CO	22:26:11.888	sTCPtx-dm00disp0	0003724919	dm00disp00->10.20.20.2/30	SIGHUP at 03:51:20.991			
STOPPED	30092	ntw-tx-ircam0	TERM	C0	03:52:27.459	sTCPtx-ircam0	0008005735	ircam0->10.20.20.2/30101	Loop exit 05:21:28.519			
STOPPED	08726	ntw-tx-dm00disp11	TERM	C6	22:24:19.990	sTCPtx-dm00disp1	0000000000	dm00disp11->10.20.20.2/30	Loop exit 22:24:19.994			
STOPPED	08648	ntw-tx-dm00disp10	TERM	Ce	22:24:16.990	sTCPtx-dm00disp1	0001727994	dm00disp10->10.20.20.2/30	SIGINT at 22:25:59.145			
STOPPED	08562	ntw-tx-dm00disp09	TERM	CB	22:24:13.990	sTCPtx-dm00disp0	0001727996	dm00disp09->10.20.20.2/30	SIGINT at 22:25:59.141			

Streams are shared memory data structures

	[F3] write PIDs [F4] read P: u = 32 Hz fscan=18.78 Hz (20 playing 0- 37 Selected (0.00 Hz 6.09 % b							
ocam2krc	UI16 [44x 44x 8]	70110270382	7963.66 Hz	10 sems	Θ	10	10	10	
aol0_wfsim->ocam2d	UI16 [120x120]	8765881543	999.88 Hz	10 sems	10	10	10	10	1
ocam2d	UI16 [120x120]	8765881543	995.46 Hz	10 sems					1
.rcam0	I16 [320x256]	730118375	0.00 Hz	10 sems					1
Imvolt	UI16 [50x 50]	220154687	0.00 Hz	10 sems					1
aol0_dmdisp->dm00disp	FLT [50x 50]	220152135	0.00 Hz	10 sems					1
Im00disp	FLT [50x 50]	220152135	0.00 Hz	10 sems					1
ol0_imWFS1	FLT [120x120]	115287600	0.00 Hz	10 sems					1
aol0_imWFS0	FLT [120x120]	115287600	0.00 Hz	10 sems					
ol0_looptiming	FLT [35x 1]	108000719	0.00 Hz	10 sems					
ol0_imWFS2	FLT [120x120]	108000718	0.00 Hz	10 sems					
aol0 imWFS0tot	FLT [1x 1]	108000702	0.00 Hz	10 sems	10	10	10	10	

- Directly visible on a RAM disk with a file system representation
- Can be read/written by as many processes as you'd like (reasonably)

Stream/process data flow is achieved through POSIX semaphores

3/2-3/5/2021

Subaru Users Meeting 2021

Bring Your Own Code, Plug and Play SCERAO

An easy way to bring your code to SCExAO is to be compatible with streams

- on clock/semaphore based loops
- You **don't care** about their C I/O interfaces

...

Current collaborative projects on SCExAO

SCE AO Coronagraphy / Speckle Grid

Focal plane and Pupil plane images with an apodized pupil combined with a 80PM coronagraph

- We continue the development of performant coronagraphs at small inner working angles (VVC, PIACCMC, 8OPM), especially for broadband observations compatible with CHARIS.
- We also work at improving the stability and accuracy of the calibration speckles used for astrometry and photometry.

3/2-3/5/2021

GLINT, dispersed on the horizontal axis. Some

- **3D-printed microlenses on a multi-core fiber.**
- Other explorations of WFS using photonic lanterns.

AN5

AN6

AN2

1800

1700

1600

Wavelength (nm)

1500

1400

Spatial a

250

300

Interferometric & Fiber Injection Modules SCEXAO

We developed several innovative interferometric and fiber injection modules, for science and WFS:

- FIRST: a visible interferometric module with spectroscopic capabilities.
- See Poster p31 (S. Vievard)
- GLINT: a NIR photonic nulling interferometer.
- See Paper p18 (M.-A. Martinod)
- RHEA: a visible 3x3 element IFU with high-res spectroscopy, and now also a NIR version using

Sampling of the Subaru pupil Injection into

single-mode fibers using

a micro-lens array for

FIRST

Interferometric output of

wavelengths are nulled

by playing with the optical path difference

between channels.

1000

500

Focal Plane Wavefront Sensing Developments

Focal plane wavefront sensing for low-order aberrations, low-wind/island effect

- Phase retrieval with asymmetric pupil mask: Zernike Asymmetric Pupil (ZAP) WFS
- Phase diversity
 - Linearized Analytic Phase Diversity (LAPD)
 - Mono-plan phase diversity
 - Fast and Furious (sequential Phase Diversity)
- PSF reconstruction from PyWFS using Neural Network

 Reinforcement learning: Direct Reinforcement Wavefront Heuristic Optimisation (DR WHO)

On-sky validation - S. Bos et al. (2020)

24

Focal Plane Wavefront Sensing Developments

Speckle nulling with a MKID detector

We are developing several speckle suppression & control algorithms for various applications:

- Speckle nulling using the MKIDS IFS MEC
- Speckle nulling for single stars and binary systems using fast IR cameras (C-RED ONE, C-RED 2)
- Speckle control to stabilize dark holes with Linear Dark Field Control (LDFC)
 Various other CDI techniques.

Lab demonstration of speckle nulling (top)²² and multi-star wavefront control (bottom) Subaru Users Meeting 2021

3/2-3/5/2021

Major upgrades (2020-2022)

Steps to get closer to the TMT-PSI configuration

See Presentation o28 (Y. Ono) & Poster p07 (O. Guyon)

Subaru Users Meeting 2021

SCE AO Towards **PSI** Phase Ia: NIR PyWFS for AO188

The first upgrade will be the addition of a NIR PyWFS inside AO188, benefiting both SCExAO and IRCS behind AO188.

The NIR PyWFS, designed for y to H-band, uses a C-RED ONE camera (shared with the fast IR PDI mode for now), originally for a spectroscopic study of the galactic center with IRCS.

SCE AO Towards **PSI** Phase Ia: NIR PyWFS for AO188

- The NIR PyWFS will be available for the other modules of SCExAO.
- The design uses mostly off-the-shelf mechanical parts, custom-made achromatic lenses, and a custom pair of roof prisms similar to SCExAO's Vis PyWFS.

Subaru Users Meeting 2021

SCE AO Towards **PSI** Phase Ib: ALPAO 64x64 DM

The second upgrade will replace the current 188-actuator DM with an ALPAO 64x64-actuator DM, with more than 3000 actuators inside the pupil. AO188 will then become AO3000.

Subaru Users Meeting 2021

sce ao Towards PSI Phase Ib: ALPAO 64x64 DM

- It is almost a drop-in replacement: The new DM has about the same physical size as the old one. The tip-tilt mount of the old DM will be moved to another flat mirror in the path.
- AO188's WFS will also be upgraded at a later date, possibly with a visible
 PyWFS with an OCAM2K.

Phase II: Beam Switcher

In Phase II, a new beam switcher will allow for fast switching or simultaneous observations with SCExAO, IRCS, a new LTAO WFS, and potential visitor instruments.

SCExAO is already testing critical hardware and algorithms for TMT-PSI: photon counting cameras, (predictive/focal plane) wavefront control, advanced coronagraphy, single mode fiber injection, etc.

sce ao Towards SPSI Phase II: Beam Switcher

The new beam switcher will allow to split the light between SCExAO (~PSI-blue) and a NIR instrument (~PSI-red) like IRCS, or other visitor instruments (NIR IFS? Hi-Res spectrograph?)

- SCExAO is a unique instrument, able to simultaneously perform competitive science, while testing new technologies routinely for future high-contrast imagers like TMT-PSI.
- The framework allows for a large number of international collaborations, with groups testing remotely or in-situ new hardware, software and algorithms.
- We are demonstrating key techniques that are necessary if we want to reach the imaging of Earth-size planets with TMT.
- The global architecture of the IR Nasmyth platform at Subaru will also evolve rapidly in the next 2 years, to become an ideal on-sky system validation of TMT-PSI.
- New collaborations are always possible, if you have some new ideas!