

Galaxy Clusters in the AKARI North Ecliptic Pole field detected by Subaru Hyper Suprime-Cam

<u>Ting-Chi Huang (Kevin)^{1,2}, Hideo Matsuhara², Tomotsugu Goto³, Daryl Joe D. Santos³, Chien-Chang Ho³, Tetsuya Hashimoto^{3,4}, Seong Jin Kim³, Nagisa</u> Oi⁵, Hiroyuki Ikeda^{6,7}, Matthew A. Malkan⁸, Agnieszka Pollo^{9,10}, Stephen Serjeant¹¹, Sune Toft^{12,13}, Ho Seong Hwang¹⁴, Chris Pearson^{11,15,16}, Hyunjin Shim¹⁷, Yoshiki Toba^{18,19,20}, William J. Pearson⁹, Takamitsu Miyaji^{21,22}, Umi Enokidani^{1,2}, and Dongseob Lee¹⁷

¹The Graduate University for Advanced Studies (SOKENDAI) ²Institute of Space and Astronautical Science (ISAS), JAXA ³Institute of Astronomy, National Tsing Hua University (NTHU) ⁴Center for Informatics and Computation in Astronomy, NTHU ⁵Tokyo University of Science ⁶National Astronomical Obvervatory of Japan (NAOJ) ⁷National Institute of Technology, Wakayama College

⁹National Centre for Nuclear Research ¹⁰Astronomical Observatory of the Jagiellonian University ¹¹The Open University ¹²Cosmic Dawn Center ¹³Niels Bohr Institute ¹⁴Korea Astrnomy and Space Science Institute (KASI) ¹⁵RAL Space, Rutherford Appleton Laboratory ¹⁶Oxford Astrophysics, University of Oxford

¹⁷Department of Earth Science Education, Kyungpook National University ¹⁸Department of Astronomy, Kyoto University

- ¹⁹Academia Sinica Institute of Astronomy and Astrophysics
- ²⁰Research Center for Space and Cosmic Evolution, Ehime University
- ²¹Instituto de Astronom ía, Universidad Nacional Aut ónoma de M éxico ²²Leibniz Institut für Astrophysik Poysdam

Introduction

⁸Department of Physics and Astronomy, UCLA

Galaxy Clusters for Galaxy Evolution

Galaxy cluster is a very important astronomical object, for it can be used in various research fields, for example, cosmology and galaxy evolution. We are interested in the environmental effects on physical properties of a galaxy, such as star formation rate, stellar mass, AGN fraction, PAH luminosity, and their evolution with redshift (z).

Results

Galaxy Cluster images

More Galaxy Clusters

This work is based on the HSC observations in the AKARI North Ecliptic Pole (NEP) field, which is a 5.4-deg² area. AKARI NEP data was obtained by the 9 mid-infrared filters of AKARI Infrared Camera, which continuously cover the most important wavelength range for studying many dust properties of galaxies. However, the number of known galaxy clusters in the AKARI NEP field from previous studies is small. There were only 7 clusters confirmed by ROSAT X-ray survey and 16 high-redshift clusters found in a 0.5-deg² field. A sufficient number of clusters is necessary for us to study the environmental effect of galaxy evolution.

The RGB images of two cluster candidates stacked by HSC g, r, and i band.

Color Magnitude Diagrams

[left] The photo-z performance of this work. [middle] The number distribution of photo-z. [right] The HSC observations coverage (blue and brown) on the AKARI NEP field (red).

16	18	20	22	24	26	16
1.4						

The color magnitude diagrams of two cluster candidates. The red circles are cluster galaxies, and the grey dots are field galaxies. The green dashed line is the color cut for defining red galaxies.

Completeness Test

We estimate the completeness by applying our cluster finding code on mock clusters with different photo-z uncertainties.

The completeness as a function of redshift (left) and richness (right) with photo-z dispersion of 0.03 and 0.06.

Summary

In order to investigate the environmental effects of galaxy evolution, we have selected galaxy cluster candidates by applying the friends-of-friends algorithm to the galaxies with high local density. 91 cluster candidates with 4362 member galaxies from redshift 0.2 to 1.1 were found in the AKARI NEP field. Some cluster candidates look promising according to the optical images and the color-magnitude diagram. Our method has been examined by the completeness tests. We plan to compare physical properties between cluster and field galaxies in the future.