

Carbon-Enhanced Metal-Poor stars studied with LAMOST and Subaru

Wako Aoki (NAOJ) H. Li (NAOC), T. Matsuno (Groningen), Q. Xing(NAOC) Li et al. (in prep) Aoki et al. (2018, PASJ), Zhang et al. (2019, PASJ)

Carbon-Enhanced Metal-Poor stars studied with LAMOST and Subaru: summary

- About 400 very metal-poor stars ([Fe/H]<-2) have been found and investigated with LAMOST and Subaru/HDS. (Li et al., P14 in this meeting)
- About 15% of them are carbon-enhanced stars (CEMP). The frequency is higher in main-sequence turn-off stars than giants, reflecting the evolutionary effect, in particular dilution of carbon accreted from companion AGB stars for some CEMP stars (CEMP-s).
- Detailed abundance patterns of both light and heavy elements for extreme objects provide useful constraints on mass of the progenitors (AGB stars and a sort of supernovae) that produce carbon-rich material.

Large sample of metal-poor stars are useful for studying process from first stars to low-mass stars

Chemical abundances of extremely metal-poor stars
→ Nucleosynthesis of first stars/supernovae
→ Masses of progenitor stars

Studies of metal-poor stars with LAMOST and Subaru

Japan(JSPS)-China(CAS) joint program: <u>2016-2018</u>: Exploring the early chemical evolution of the Milky Way with LAMOST and Subaru

2019-2021: Origins of the Milky Way halo structure explored with LAMOST and Subaru

Subaru intensive program S16A-119I (2016-2017): LAMOST/Subaru study for 500 very metal-poor stars

Sample and results

- 7 million spectra for Milky Way stars have been obtained with the LAMOST regular survey (LAMOST-I).
- High resolution spectra with Subaru/HDS have been obtained for >400 metal-poor stars.(Aoki et al., in prep.)
- Abundance of >20 elements are measured by standard analysis with model atmospheres (Li et al. in prep. Poster P14 in this meeting)
- Other studies:

Xing et al. (P32) Zhao et al. (P33)

Abundance distributions measured from the Subaru/HDS spectra

- Abundance trends as a function of metallicity are studied for carbonnormal stars.
- Abundance ratios of CEMP are compared to abundance trends.
- Warm stars (turn-off stars) and cool stars (red giants) are studied separately.

Detection limit of CH band: possible bias in C abundance measurements in warm stars

CH molecular bands are not detected in warm stars unless C is enhanced, where as lack of C-rich stars in cool giants suggests extra-mixing of matter affected by CNO cycle.

Lack of carbon-rich objects in cool giants

C abundance distribution: [C/Fe]

[C/Fe] distribution is wide reflecting depletion in giants and enhancements for some objects. Frequency of CEMP is 7% in giants and >20% in turn-off stars.

- Carbon-enhanced stars: [C/Fe] > 0.7 (in this work)
- CEMP-s (s-processenhanced by mass accretion from AGB stars)
- CEMP-no stars are not well separated from Cnormal stars.

C abundance distribution: C/H ratio

C/H (A(C)) distribution is different between CEMP-s and CEMPno stars as found by previous studies (e.g., Yoon et al. 2016)

- Group I: Large C-excess is found in CEMP-s stars.
- ② Group II: C-excess of most of CEMP-no is moderate.
- ③ Group III: some CEMP-no with extremely low metallicity shows relativel high A(C) → It is not clear in our sample.

Detailed abundance patterns of extreme objects: mass estimates for progenitors

- Detailed abundance patterns are determined for extreme CEMP stars, constraining the progenitor masses
- LAMOST J2217+2104: ultra metal-poor CEMP-no star. The progenitor mass is about 20-25_☉ and its explosion (→p.11)
- LAMOST J0119-0120: CEMP-s star showing the largest excess of s-process elements → 1.4M_☉ AGB star as the progenitor (→p.12)

CEMP-no star LAMOST J2217+2104: Comparison with supernova models

The abundance pattern is well reproduced by a supernova model for a 25M_o first star (Ishigaki et al. 2018)

- The (C+N)/O and Na/Mg ratios are sensitive to the progenitor mass.
- The cause for excesses of C, Mg, and Si would not be the progenitor mass, but other natures (e.g. spin, binarity)

LAMOST J0119-0121: CEMP-s star showing largest excess of s-process elements

Direct comparison of AGB models (e.g. Bisterzo et al. 2010)

- Abundance pattern of neutron-capture elements (Sr-Ba-Pb) are reproduced by models of s-process for low metallicity
- Na and Mg abundances are useful to constrain AGB mass. \rightarrow 1.4M_• model AGB star Thang et al. (2019)

