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ABSTRACT

ULTIMATE-Subaru Tomography Adaptive optics Research experimenT (ULTIMATE-START) is a laser tomog-
raphy AO project on the Subaru telescope. The project is planned to achieve high Strehl Ratio AO correction in
NIR bands, and moderate AO correction in visible bands above 600nm. An asterism of 4 laser guide stars (LGSs)
will be launched from the laser launching telescope behind the secondary mirror. The tomography wavefront
sensing unit with four 32×32 Shack-Hartmann wavefront sensors will be installed behind the current facility
LGS AO system, AO188. The deformable mirror of AO188 will be upgraded to a 64×64 element DM. The
corrected light will be fed to the optical integral field spectrograph, 3DII, and NIR camera and spectrograph,
IRCS, through a beam switching optics for IR-side Nasmyth focus instruments under development. The first
light of the laser launching system and wavefront sensing unit is planned in 2021.
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1. INTRODUCTION

ULTIMATE-Subaru Tomography Adaptive optics Research experimenT (ULTIMATE-START) is a project to
realize a laser tomography AO system on the Subaru telescope and to achieve good AO correction in the wide
wavelength range between 600nm and 2500nm. The performance of a single LGS AO system is limited by the
cone effect, and the residual wavefront error is not negligible especially in the short wavelength range. Utilizing
a tomography AO system with multiple LGSs, sufficiently good AO correction with Strehl Ratio ∼ 0.1 in the
visible wavelength range can be achieved.

The scientific targets of the projects are (1) cosmological evolution of the distribution of stars inside galaxies
at high redshifts with high-resolution NIR imaging observations, and (2) cosmological evolution of the dynamical
structure of galaxies at high redshifts with high-resolution visible integral field spectroscopy. Additionally, the
high-resolution visible IFS is capable to explore low-mass super massive black holes at the center of low-mass
galaxies in the local universe.

There are two milestones in the project. The first milestone is to upgrade the existing facility AO188 LGS
AO system by implementing 20W TOPTICA SodiumStar 20/2 laser as one LGS. By increasing the brightness of
the LGS by a factor of 10, we expect close to the diffraction limited AO correction in the NIR wavelength. The
second milestone is to conduct tomography AO experiments with 4 LGSs and tomography wavefront sensing unit
with 4 LGS wavefront sensors (WFSs). The laser input from the laser will be divided into 4 beams and launched
with the current laser launching telescope (LLT) to make an LGS asterism with 4 LGSs with diameter of 10′′–40′′.
The details of the LGS LLT system are explained in Section 3. The tomographic wavefront measurement unit
will be installed on the Nasmyth focus behind the AO188 as shown in Figure 1, and the tomographic wavefront
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measurement will be done in a closed-loop manner with the currently available 188 element bimorph deformable
mirror. The details of the unit is described in Section 4). Real time calculation system for the tomographic
estimation will be installed, and the calculated correction will be send to the upgraded AO188 real time control
system based on CACAO1 The overview of the WFS data acquisition and control system are shown in Section 5.

Based on the availability of the new laser light source, detectors for Shack-Hartmann wavefront sensor (SH-
WFS) (Hamamatsu OrcaFlash 4.0 v2 sCMOS camera), existing facility AO system (AO188), and the LLT, we
determine the baseline parameters of the system. Furthermore, in collaboration with the extreme AO develop-
ment for the Subaru telescope, SCExAO, the upgrading of the DM in the AO188 system with 64×64 large-stroke
ALPAO DM is scheduled. A quick parameter survey of the tomography AO system is conducted with MAOS
AO simulator developed for TMT.2 The results are summarized in Figure 2. Based on the results, we determine
the nominal system configuration with > 25 × 25 elements, 4 LGSs with < 20′′ diameter asterism (< 10′′ from
the center of FoV), and > 400Hz WFS sampling. Further specifications of the system parameters are made based
on more detailed AO simulation as described in Section 2.

AO188

Ns Beam Switcher

Kyoto 3DII

SCExAO
LTAO WFS

UNIT

Figure 1. Location of the laser tomography adaptive optics (LTAO) WFS unit on the IR-side Nasmyth platform of
the Subaru telescope. The unit will be put after AO188, facility AO system, and apply the AO correction using the
deformable mirror inside AO188. The light after LTAO WFS unit will go through Ns beam switching system, and will be
delivered to science instruments, such as infrared camera and spectrograph (IRCS) and visible integral field spectrograph
(3DII). Calibration light source and low-order WFS of AO1883 are used for the calibration of the tomography wavefront
sensing unit and for removal of the fast tip-tilt and slow focus components.

2. TOMOGRAPHY AO PERFORMANCE SIMULATION AND PARAMETER
SPECIFICATION

2.1 SH-WFS Parameters Optimization with Centroiding Error Simulation

In order to determine the parameters of the LTAO system, at first we consider the FoV of each subaperture of
the SH-WFS. Left panel of Figure 3 shows the size of spot wondering as a function of the number of subapertures
across the pupil. Atmospheric turbulence profiles at Subaru Telescope is assumed in the same way as in Oya
et al. (2014).4 Under the bad condition with outer scale L0 = 30m and 32×32 sampling, the spot wondering
is estimated to be 2.7′′. Right panel of the figure shows the required FoV to achieve the linear range for the
centroiding. If we follow the most demanding case, LGS size of FWHM=2.0′′ with centroiding by the center of
gravity without thresholding, subaperture FoV of 6.0′′ is required to achieve the 2.7′′ linear range.

In order to determine the pixel sampling, we conduct Monte Carlo simulations of the centroiding errors.
Assuming science CMOS camera, Hamamatsu Photonics OrcaFlash 4.0 v2, for the SH-WFS, we use the readout
noise of σRON = 1.6 e−1 pixel−1 in the simulation. The TOPTICA laser photon return rate is measured to be
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Figure 2. Tip-tilt removed high-order wavefront errors with a tomographic AO system with different orders (left) and
integration time (right) evaluated with MAOS AO simulation code.2 Dashed lines represent the fitting errors expected
for system order of each case. Parameters for each simulation are summarized in the label, siglev means photon counts
per subaperture with 800Hz sampling for LGS WFSs and rne is read-out noise of the SH WFS. In the right integration
time evaluation, subaperture photon count per frame is fixed to focus on the effect of time delay.

1000 ph cm−2 s−1 at the Keck telescope.5 Considering we divide the TOPITCA laser light into 4 LGSs, photon
number per 25cm × 25cm subaperture is estimated to be 156 photons per 2msec with 50% total throughput. The
size of the LGS spot is assumed to be FWHM of 1.0′′, 1.5′′, and 2.0′′. Using the current AO188 LLT, LGS image
size is measure to be 1.5′′6 or 1.0′′.7 By the simulations, it is suggested that the optimal centroiding method
for low photon count case (∼100 counts per subaperture) is TCoG with 3-5×σRON threshold. The results of
centroiding simulations as a function of photon count and pixel scale are shown in Figure 4. 2000 realizations
are made at each bin. TCoG with 3×σRON threshold is used. The optimal samping of the SH-WFS is 1.0′′ for
photon count less than 400 photons per subaperture. In summary, 1.0′′ per pixel sampling and 6.0′′ FoV per
subaperture is determined.

2.2 End-to-end performance simulations

Following the quick parameter survey of the system shown in Figure 2, end-to-end performance simulations
have been conducted8 with OOMAO AO simulation tool.9 In the simulation median condition with L0 = 30m
is assumed. Following the centroiding simulation, 200 photons per subaperture with 2 msec exposure and
25cm×25cm subaperture, and one step control latency are assumed.

At first, optimal number of subapertures are further examined. Figure 5 shows the results of error breakdown
as a function of number of subapertures. The top-left and -right panels show the case for current 188 elements
DM and upgraded 64×64 DM. Fitting error is the largest error component for both cases, but tomography and
delay error terms are comparable in the upgraded DM case. Increasing the number of subapertures, fitting and
tomography errors decrease and noise error increases. Total WFE in the high-order modes are summarized in the
bottom panel with upper and lower lines with current 188 elements and upgraded DMs, respectively. Considering
the increase of the noise with 40×40, we decided to use 32×32 for the number of subapertures.

Another critical parameter of the LTAO system is the separation of the LGSs. In order to reduce the cone
effect associated with a single LGS, the light path from an object at infinity needs to be covered by the meta-
pupils of the LGSs at the highest turbulence altitude. The highest turbulence layer at 16km altitude can be
covered with the 4 LGSs on a circle of d = 20′′. End-to-end simulation and analytical performance evaluation
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Figure 3. Left) Size of spot wondering (6×σslope) as a function of the number of subapertures. Median and bad conditions
represent median 7-layers turbulence profile model for Subaru4 at a zenith angle of 30 degree and bad 7-layers model
at a zenith angle of 60 degree, respectively. Solid and dashed lines show the size for outer scale of L0 = 30m with and
without Tip-Tilt component, respectively, and dotted line for no outer scale. Right) WFS subaperture FoV required to
achieve a certain linear range for the centroiding (linear FoV). LGS size is assumed to be FWHM of 1.0′′, 1.5′′, and 2.0′′.
Different line types correspond different centroiding methods, CoG: center of gravity, TCoG1: CoG with threshold with
3×σRON and spot with 1000 photons per subaperture, TCoG2: CoG with the same threshold and spot with 200 photons
per subaperture.
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Figure 4. Centroiding error as a function of photon count per subaperture and per frame and pixel scale for image
FWHM=1.5′′ and 2.0′′ conditions, respectively. The yellow lines show the pixel scale giving minimum centroiding error
for each photon count.

results are summarized in Figure 6. In order to evaluate the accuracy of tomographic estimation for the high-
order wavefront components, the SR is calculated without the low-order tip-tilt wavefront error. The results
show SR can be maximized with LGS asterism diameter of 16′′ as expected from the simple evaluation. If the
targets are at higher zenith angle, the optimal diameter decreases down to 8′′ for zenith distance of 60 degree
due to the larger effective distance to the turbulence layers with larger zenith distance.

End-to-end simulation results including low-order WFE are summarized in Figure 7. In this calculation, tip-
tilt NGS is assumed at the center of the FOV, i.e., anisoplanatic error of the tip-tilt correction is not included.
Low-order WFS system inside the AO18810 is assumed for the tip-tilt measurement. It should be noted that the
WFS is not optimized for tip-tilt measurement with light only wavelength range below 575nm,3 which is picked
off by NGS low-order WFS beam splitter in Figure 15), the tip-tilt component significantly contributes. in the



current performance simulations with fainter guide stars. Left panel shows the K-band SR as a function of the
brightness of the natural guide star. Significant increase of SR is expected compared to the current NGS/LGS
AO188 performance. On the right hand side, predicted SR is shown as a function of wavelength. SR of ∼ 0.1
can be achieved in the visible wavelength range (> 600nm).

Figure 5. Top: Estimated high-order wavefront error for the tomography AO system with AO188 DM (left) and upgraded
ALPAO DM (right). SH-WFSs with 25×25, 32×32, and 40×40 are assumed. Bottom: Total high-order WFE as a function
of number of subapertures accross the pupil. In the current simulations, it is assumed that the turbulence profile is given,
and the effect of uncertainty in the turbulence profile is not included.

3. LASER GUIDE STAR

3.1 Laser Fratricide Effect

In ULTIMATE-START experiment, we will launch the laser in the center launch configuration behind the
secondary mirror of the Subaru telescope using the current laser launch telescope for the AO188 system.11 If we
launch multiple laser guide stars, contamination of Rayleigh back scattered light needs to be considered (laser
fratricide effect), especially in the center launch configuration.12 The Rayleigh back scattering is observed up to
16.4 km. In the right panel of Figure 8, the contamination of the Rayleigh back scattering in the WFS pupil is
shown as a function of LGS asterism diameter. At zenith, we can hide the Rayleigh back scattered light behind
the shadow of the secondary mirror cone by a LGS asterism smaller than diameter of 16′′, and the asterism needs
to be smaller at lower elevation, 10′′ at z = 60 deg. Those diameters match with the optimal diameter shown in
Figure 6. Considering the dependence of the optimal asterism diameter on the zenith distance and the fratricide
effect, we consider the multiple LGS launching system with variable asterism diameter with 10′′ to 40′′
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Figure 6. Simulated Strehl Ratio (SR) as a function of LGS asterism diameter. Tomography wavefront measurement with
32×32 elements and correction with the current AO188 DM are assumed. WFE associated with the tip-tilt component is
not considered. Solid line represents analytical calculation results, and points show the end-to-end numerical simulation
results.

Figure 7. Results of end-to-end simulations. NGS are assumed at the on-axis and tip-tilt anisoplanatism is not included.
Left: K-band SR as a function of tip-tilt NGS magnitude in R-band. Right: Expected SR as a function of wavelength.
NGS with R = 12 mag is assumed.

3.2 Launching System for Four Laser Guide Stars

Schematic diagram of the laser transfer path is shown in Figure 9. Details of the system are described in Mieda
et al. (2018)13 and Morris et al. (2020).14 Laser electric cabinet for TOPTICA SodiumStar laser will be put
on the NsIR platform and the laser head will be attached to the center section of the telescope structure with
the laser diagnostic bench. The cabinet and laser head will be connected through 30m fiber, which goes through
the elevation cable wrap of the telescope. The diagnostic bench has optics to control the circular polarization
properties of the beam. The beam from the diagnostic bench will go through truss and reach the optical relay



box attached to the top ring structure of the telescope. After the relay the beam is finally transferred along
the spider to the bench attached to the laser launching telescope (LLT). Beam positions measured at four PSDs
(one in the diagnostic bench, one in the optical relay, and the other two in the LLT bench) will be adjusted
by three fast steering mirrors (FSM) in the optical path before the division of the beam. The beam will be
divided into 4 beams with 3 beam splitters (BS1-3). There is a flip-mirror (FM) which can switch between one
and 4 LGS modes. In the diagram, only 4 LGS mode is shown. The divided beams will go through a pair of a
tip-tilt and compensation mirrors, which enable to change the diameter of the asterism of 4 LGSs by adjusting
the tilt of pairs of mirrors. Asterism diameter from 10′′ to 40′′ will be realized under the current design. The 4
beams go through the asterism rotator and beam expander, and are fed to the LLT. The last FSM before the
LLT will off-load the tip-tilt component measured with the LGS WFSs. There is a tip-tilt correction mirror in
each SH-WFS, and high frequency wondering of each LGS will be corrected with the tip-tilt mirror, details are
discussed in Section 4.1.

Mechanical structures of the diagnostic bench, relay truss, and optical relay box are shown in the top panel
of Figure 10. The beam path go through the spider relay to reach the side of the LLT as shown in the bottom
panel of the figure. The mechanical design of the 4 LGS launching system is shown in Figure 11. The optical
bench occupies two side of the current LLT, and the beam is injected through a blue tube on the OPT view. The
divided 4 beams are transferred to the Read view and fed to the LLT through the asterism rotator and beam
expander.

The size of the secondary mirror (M2) of the current LLT (D = 42mm) limit the size of the beam and
possible diameter of the LGS asterism. We expand the beam with ×6.0 expander, and the final 1/e2 (5%) beam
diameter at the exit window of LLT will be 225mm (300mm). The beam diameter of 225mm is optimal for the
spot centering error for wide range of the seeing condition.13
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Figure 9. Schematic view of the laser launching path with 4 LGSs. Diagnostic bench with the laser head will be installed
on the center section of the telescope as shown in the top panel of Figure 10. Power meters (PMs) monitor the output
power during the shutter mirrors are closed. Position sensitive devices (PSDs) measures the position of beam center to
keep the alignment of the beam transfer with the fast and slow steering mirrors (FSM and SSM). Diameter of the asterism
will be changed between 10′′ and 40′′ with 4 pairs of tip-tilt and compensation mirrors (TTM and CM). The 4 laser beams
will transfer though asterism rotator and beam expander before launching from the laser launching telescope.



Figure 10. Top: Mechanical structure for transferring laser beam from laser head to top ring of the telescope through
relay truss structure. Bottom: Beam transfer from telescope top ring to the LLT attached behind the secondary mirror
of the telescope.



OPT View
Rear View

Figure 11. LLT with 4 LGSs launching optics. Bottom two panels show the views of the optical system from OPT and
rear sides of the telescope.

4. TOMOGRAPHY WAVEFRONT SENSING UNIT

4.1 Opt-mechanical design

The parameters of the WFSs are summarized in Table 1. The current optical design of the tomography wavefront
sensing unit is shown in the top panel of Figure 12. The light from AO188 focus will be picked-off into the unit.
The fore optics of the system has focusing optics, image rotator, and pupil monitor. The fore optics are optimized
such that an ideal point source at the AO188 focus with object distance between 75km and infinity to be imaged
as an point source at the fixed entrance of the SH-WFSs. The focusing optics is designed to accommodate focus
change due to the variation of the distance to the LGSs depending on the altitude of the sodium layer and zenith
distance of an observation, and the distance range from 75 km to infinity is considered as shown in the bottom
panel of the figure. The LGS asterism diameter from 10′′ to 40′′ is considered. The pupil monitor will be used to
check the tilt of the optical axis due to the image rotator in the AO188 system10 (AO IMR). The image rotator
in the wavefront sensing unit will be used to track the asterism rotation in case the asterism is fixed to the DM
in AO188 (not to the sky). Table 2 summarize the possible operation modes for the image rotators of the LGS
LLT asterism rotator, AO188 IMR, and WFS image rotator. One operation mode will be selected based on the
wavefront sensing performance.

As shown in the bottom panel, the image position will be changed when the asterism diameter is changed
from 10′′ to 40′′. The change will be absorbed by the change of the focus position by 9.03mm and the pyramid
mirror that is movable along the optical axis. Therefore, the optical path after the pyramid mirror is fixed. The
light from the 4 LGSs will be split into 4 directions with the pyramid mirror. In order to realize the LGS asterism
as small as diameter of 10′′, the LGS images are focused at the pyramid mirror whose ridges have 0.2mm (0.33′′

with F15.6) non-effective area. Finally, the light from the fore optics will be fed to the SH-WFS system through



Table 1. Parameters of the LGS SH-WFS.

Parameter Designed value Note

Number of Elements 32×32 see Section 2.2

Subaperture scale 0.248m 7.95m effective aperture

Sub-aperture FoV 6.84′′ see Section 2.1

Pixel sampling 0.99′′ pixel−1 see Section 2.1

Number of pixel per sub-aperture 6.93 pixel Close to be an integer. see Section 5.1.

Micro lens array APO-Q-P300-R5 f=10.9mm Advanced Microoptic Systems

Number of pixel total 224 pixel

Frame rate > 400 fps max 952 fps 224 lines with OrcaFlash 4.0 v2

Pixel size 6.5µm OrcaFlash 4.0 v2

Read out noise rms 1.6 e−1 pixel−1 OrcaFlash 4.0 v2

QE at 589nm 82% OrcaFlash 4.0 v2

a steering mirror. The steering mirror will correct the shift of the pupil against the micro lens array (MLA) in
the SH-WFS. The shift can be measured with the spot illumination pattern of the SH-WFS as well as the pupil
monitor described above.

Because the AO188 optical path with two off-axis parabolas is optimized for on-axis object at infinity,10 the
LGS images at 10′′ – 40′′ off-axis and finite distance do contain significant aberration at the focus as shown in
the left and middle panels of Figure 13. Described above in the optimization of the fore optics, in the design of
the optics we did not intend to remove the aberration in the AO188 LGS output with the LGS WFS fore optics
to reduce the non-common path aberration between the science path and tomography wavefront sensing unit.
Therefore, the aberration needs to be calibrated with a LGS calibration point source in the AO188 system for
each WFS. Furthermore, the pattern will vary when the WFS IMR is used, i.e., LGS is not fixed to the sky, as
shown by the arrow. Such time variation needs to be considered in each WFS output. We will calibrate the SH
WFSs in the LTAO WFS unit using the calibration unit of the AO188.15 The calibration unit can reproduce an
NGS with 655 and 1550nm LEDs and an LGS with a yellow LED plus 589nm filter. The LGS image altitude
can be adjusted from 80km to 200km. The entire calibration unit is on a XZ stage and the simulated beam can
be made within the FoV of 2.7′ diameter.

After the AO188 focus, there are 7 reflection surfaces and 21 lens surfaces in total in the WFS optical path.
All of the reflection and refraction surfaces are coated with multi-layer coating including the pyramid mirror.
The reflection is higher than > 99% for the mirrors and transmittance is higher than > 99.5% for the lens
surfaces at wavelength of 589nm.

Each SH-WFS for LGS has offner-relay to compensate the tip-tilt component of the LGS. A spherical mirror
with 5mm thickness is attached to the tip-tilt stage, Physik Instrumente S330.8SL, and the resonant frequency
is estimated to be 820Hz. Considering the performance of the voltage amplifier, Physik Instrumente E-505, we
expect the tilt ranges of ±5 mrad (with peak-to-peak voltage swing, Vpp = 100V) with 160Hz and ±0.5 mrad (Vpp
= 10V) with 1400Hz, which correspond to ±2.3′′ and ±0.23′′ correction range. The high frequency component
of the tip-tilt of the LGS is corrected with the stage. Additionally, we will also apply a low frequency tip-tilt
correction with the fast steering mirror (FSM) in the LLT bench (see Figure 11), because there is a pyramid
mirror before the offner-relay to divide the 4 beams to the SH-WFSs, and FoV of each path is limited by the
ridge of the pyramid mirror.

After the relay, the pupil will be imaged on the 300µm pitch MLA (Advanced Microoptics Systems, APO-
Q-P300-R5). The MLA for the system is selected based on the focal length, image quality, and through put
analysis described in.16 The 0.15 ratio relay will form 32×32 spot images on the detector with 6.93 × 6.93 pixel



per subaperture. The number of pixel per subaperture is requested to close to integer in order to align with the
rolling-shutter readout mode as described in Section 5.1.

The overall opt-mechanical design of the wavefront sensing unit is shown in Figure 14. The unit will locate
next to the AO188 system. In addition to the LGS tomography wavefront sensing unit, we also have truth WFS
to measure the corrected wavefront for a natural star to evaluate the AO performance. The optical path for
splitting the beam is shown in Figure 15. The science light will be fed into the Nasmyth beam switching relay
and delivered to science instrument. Low-order WFS is fed with < 575nm light by a beam splitter (BS1) in the
AO188 system. After the AO188 focus, LGS WFS pick-off will reflect the light into the tomography wavefront
sensing unit. In order to correct the aberration associated with the science path due to the pick-off, we put
another wedge plate in the path. The pick-off and wedge plate need to be retracted to allow observation without
the tomography wavefront sensing unit. The truth WFS will use the remaining surface reflection of the first
surface of the wedge plate. The ghost image with the reflection at the second surface will appear 17′′ away from
the primary image, and will not affect the wavefront measurement in the truth WFS. There will be a 6.7mm
focus offset with and without the pick-off and wedge plate, and the difference will be corrected in the instrument.
The total FoV of the science path has diameter of 65′′ to fed the sky monitor of the 3DII instrument, which
cover 30′′ away from the center of the FoV.

Table 2. Image and pupil rotation modes

LGS Asterism AO188 IMR DM WFS IMR WFS pupil

Fixed to primary (stop) rotate Fixed to sky rotate Fixed to primary

Fixed to sky (rotate) rotate Fixed to sky stop Fixed to sky/DM

In order to measure the tip-tilt component of the wavefront error in the target image, we will use the low-
order wavefront sensor in the AO188 system. The low-order wavefront sensor system use 2×2 Shack-Hartmenn
wavefront sensor. Each sub aperture is imaged by 4×4 lenslet array connected to an APD array. Acquisition unit
for the low-order WFS covers FoV with 2.7′ diameter.3 In order to have better conjugation with the AO188 DM
and the secondary mirror of the telescope, the ADC system in the AO188 science path will not be used. Without
the ADC compensation, guiding with the low-order WFS using <575nm can result in an offset in the science
image which is targeting >600nm, however offset guiding software, which calculate the realtime offset between
the guide star and science image, is implemented in the AO188 system, and we can use the software for the
observation. Furthermore, LOWFS itself has an ADC system inside, thus the TT and focus measurements will
not be affected by the removal of the ADC in the science path. The existing low-order WFS is not optimized for
the LTAO system, and the total throughput will be ∼ 10% in the wavelength range 490 – 530 nm. Replacement
of low-order WFS with a higher thoughput system will be considered.

Focus component of the low-order wavefront error will be measured with the low-order WFS with NGS as
well as the tomography wavefront sensing unit with LGSs. High frequency variation will be compensated based
on the LGS measurements, and low frequency variation due to the time variation of the LGS altitude is corrected
with the NGS measurements.

4.2 Atmospheric profiling

Atmospheric turbulence profile is an important prior information to conduct tomographic estimation of the vol-
umetric turbulence structure. One of established methods to measure the atmospheric turbulence profile is a
Slope Detection And Ranging (SLODAR). In the SLODAR method, the profiles are estimated by a fit of the
theoretical auto- and cross-correlations of measurements from multiple SH-WFSs to the observed correlations. In
the RAVEN experiment on the Subaru telescope, SLODAR method is applied to the three NGS WFS measure-
ments and turbulence profiling with a height resolution δh of 1.5 (km) is achieved.17 Taking the cross-correlation
between the 4 SH-WFSs with 25cm sampling, we expect a height resolution of 5.2 km (1.3 km) can be achieved
with LGS asterism diameter of 10′′ (40′′). The upper limit of the turbulence profiling will be > 16 km and the
highest layer will be covered. The height resolution with the asterism diameter of 10′′ is not sufficiently high as
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Figure 12. Optical design of the LGS tomography wavefront sensing unit. Top) optical path from the AO188 focus to
the detector. Only one SH-WFS path is shown after the pyramid mirror. Red allows with numbers indicate the remotely
movable optical element. Bottom) optical design of the LGS focusing system. LGS distance range from 75 km to infinity is
considered. d=10′′ (40′′) is for asterism diameter of 10′′ (40′′). The difference of the image separation will be compensated
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a prior for the tomographic estimation, and we may need to switch to the wide asterism (d=40′′) to measure the
profile during the observation.

As a future upgrade, we are also considering a dedicated small telescope for the turbulence profiling. In the
telescope, we will put two SH-WFSs with 2cm subaperture sampling on a small aperture telescope to conduct
the profiling with SLODAR and SH-Multi Aperture Scintillation Sensor (SH-MASS)18 to cover the turbulence
component up to 16km with altitude resolution of ∼1km.
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5. DATA ACQUISITION AND REAL TIME CONTROLER

5.1 Wavefront measurements with rolling-shutter sCMOS camera

Science CMOS camera sensor, OrcaFlash 4.0 v2 from Hamamatsu Photonics Co. with rolling-shutter reading
out will be used in the tomography wavefront sensing unit. Partial reading out of the sensor with 224 lines will
be used to cover the 32×32 SH spots with 7×7 pixels per subaperture. In the standard data acquisition mode,
the pixel data of the entire frame with 224 lines will be transferred at every 1.05ms through CameraLink 80 bit
configuration equivalent interface. The standard scan mode achieve read out noise with median (rms) of 1.0 e
pixel−1 (1.6 e pixel−1). Due to the nature of the rolling-shutter readout mode, the real timing of the integration
depends on vertical position (line number) on the detector as shown with white bars in Figure 16. At the time
of the data acquisition from the image analysis software, which is indicated with vertical red arrows, the central
lines of an image are delayed by the integration time after the end of the exposure, though the upper and lower
most lines are used just after the end of the exposure.

In order to reduce the delay associated with the data transfer and centroid calculations, we are developing a
readout mode that acquires data every 7×2 lines as shown with vertical black arrows in Figure 16. Such readout
mode is realized utilizing line scan mode of PIXCI E4 frame grabber board from EPIX, Inc. Each 7 lines will be
aligned to cover one row of SH spots, and centroid calculations for one row can be done during waiting for the
next row (66µsec). The synchronization of the 4 LGS WFSs will be made with a trigger signal from an analog
I/O board. The sCMOS camera can trigger start of the read-out under the read-out synchronization trigger
mode with 166µsec delay.

5.2 Overall Control Architecture

The overview of the real time control system (RTS) of the tomographic wavefront measurement unit is sum-
marized in figure 17. The right half of the system will locate on the IR-side Nasmyth platform. The right
most part of the diagram shows the low-level interface to the data acquisition and motion control units. The
tomographic estimation will be done in a stand-alone computer (RTC) dedicated for the system. The estimated
wavefront correction is send to the AO188 RTS with CACAO software interface. The telescope control can be
done separately, and the tomography RTC need status information from the telescope.

6. SUMMARY

Overview of the ULTIMATE-START project on the Subaru telescope is provided. The new laser launching
system will be installed early 2021, and testing of the laser launching will be done in mid 2021. The fabrication
of the tomography wavefront sensing unit is underway, and assembling of the unit in Tohoku university will
happen in mid 2021. The unit will be delivered to Subaru telescope late 2021. The ALPAO DM will be delivered



AO188 optical bench

Truth-WFS with 1 SH-WFS for NGS
  and pick-off assembly

Tomography-WFS with 4 SH-WFSs for LGS

Figure 14. Overview of the opt-mechanical design of the tomography wavefront sensing unit (top). Bottom panel shows
the optical components only. The unit will locate next to the AO188 system. Left side of the system, we will have a
truth-WFS with one SH-WFS for NGS to evaluate the tomography AO performance. The truth SH-WFS will use MLA
with longer focal length (Newport MALS10 with f=18.8mm) than for the LGS SH-WFS (f=10.9mm), and realize 3.97′′

subaperture FoV with 0.57′′ sampling. The tomography WFS and truth WFS will be put on separate optical bench with
a hexapod structure. In the bottom panel, the pupil monitor camera is not shown.

mid 2021, and the installation will follow. The planned first light of the four LGSs and the wavefront sensor unit
is early 2022, and science verification observation with 3DII and IRCS will be made.
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