Subaru UM FY2020

Exploring the tail end of reionization with deep HSC surveys

see Kashino+2020, ApJ, 888, 6 for the first results

Daichi Kashino (Nagoya) Collaboration with S. Lilly (ETH Zurich), T. Shibuya, M. Ouchi N. Kashikawa, R. Ishimoto

Aim of our Subaru/HSC project

How was the Universe reionized?

Reveal the origin of **highly inhomogeneous spatial structuresHI optical depth of the IGM at the end of reionization**, which must telling us about processes at earlier times.

Exploring the tail end of reionization with deep HSC surveys

Gunn-Peterson test

Effective optical depth $\tau_{\rm eff} = -\ln\langle F_{\lambda}^{\rm obs}/F_{\lambda}^{\rm int}\rangle$ (averaged over ~70 cMpc, or Δz =0.15)

The rapid increase of optical depth marks the end of reionization at $z\sim 6$.

Gunn-Peterson test — increasing scatter of τ_{eff}

Effective optical depth $\tau_{\rm eff} = -\ln\langle F_{\lambda}^{\rm obs}/F_{\lambda}^{\rm int}\rangle$ (averaged over ~70 cMpc, or Δz =0.15)

Competing scenarios

Model	What fluctuate?	Source of fluctuation	Predicted τ _{eff} -ρ relation and/or observation	
fluctuating-λ_{mfp} Davies & Furlanetto '16	Γ	Galaxy distribution and spatially-varying λ_{mfp}	Negative correlation: high- $\tau_{eff} \Leftrightarrow low-\rho$ $low-\tau_{eff} \Leftrightarrow high-\rho$	
rare-source Chardin+15, 17	Γ	Significant contribution of rare bright sources, i.e., quasars	Not clear, but we should always find >1 quasars in high-τ _{eff} region, but no in low-τ _{eff} regions	
fluctuating-T_{IGM} D'Aloisio+15	Т	Time-lags of reionization b/w over- and underdensities	Positive correlation: high- $\tau_{eff} \Leftrightarrow$ high- ρ low- $\tau_{eff} \Leftrightarrow$ low- ρ	
Late-reionization Kulkurni+19 Keating+19	Γ (and T)	Residual neutral islands (x _{HI} ~1) in reionization that ended at z~5.2	$\frac{\text{high-}\tau_{\text{eff}} \Longrightarrow \text{low-}\rho}{\text{low-}\tau_{\text{eff}} \Longrightarrow \text{wide variation in }\rho}$	

Fluct-Γ: ι

Fluct-T: overdensities are ionized earlier then have enough time to cool \rightarrow high- τ_{HI}

Semi-numerical simulations by Davies et al. (2018)

Exploring the tail end of reionization with deep HSC surveys

Testing the models

Correlate **galaxy distribution** with **the HI optical depth** across 5.5<z<6.0.

Subaru/HSC matches perfectly to carry out this experiment!

Exploring the tail end of reionization with deep HSC surveys

Target fields

z>6 bright quasars showing extremely high- or low-optical depth Lyα forest are good.

A surprisingly opaque and long trough

A remarkably **opaque** ($\tau_{eff} \ge 7$) and **long** (~160 cMpc) Lya trough has been discovered at z=5.5–5.9 towards **J0148+0600** (z=5.98)

Very good target field for distinguishing the models

LBG surveys with HSC in multiple quasar fields

- ✓ Good density tracers which are not impacted by local HI optical depth.
- ✓ Color (i-z) is sensitive to redshift ($\delta z \simeq 0.25$, FWHM).

Observations

- Observations through S18B—S20A (additional times approved in S21A).
- HSC r2, i2, and z images at SSP-deep-like depths (~2 hrs) in seven fields.
- Complementary z=5.7 LAE surveys (using NB0816) in some of our fields are carried out by R. Ishimoto and N. Kashikawa.
- We have mostly obtained the requested images and are now performing scientific analysis.
- All data are now reduced with hscpipe8.4

Field	r2	i2	Z
J0148+0600*	27.20	26.35	26.06
J0422-1927	27.35	26.60	25.79
J0842+1218	27.20	26.80	26.16
J1137+3549	26.81**	26.28**	25.85
J1602+4228	27.16	26.57	25.88
J1630+4012	27.30	26.65**	25.96**
J2054-0005	under analysis		**

* combined with archival data

****** further observations are scheduled

Exploring the tail end of reionization with deep HSC surveys

Masking ghosts

With a custom code based on "hscGhost" (Komiyama, Kawanomoto et al.)

This makes significant improvement of the final coadded images.

Exploring the tail end of reionization with deep HSC surveys

(with 0.6-mag shallower z-band image)

First result in the J0148+0600 field

The spatial distribution of 185 LBG candidates ($z \sim 5.5 - 5.9$; $z_{AB} < 25.3$) \Rightarrow "deficit" at the quasar position

Exploring the tail end of reionization with deep HSC surveys

(with 0.6-mag shallower z-band image)

First result in the J0148+0600 field

The extremely high- τ_{eff} region is found to be associated to an underdensity of LBGs!

Exploring the tail end of reionization with deep HSC surveys

Daichi Kashino | Nagoya U. | daichi@nagoya-u.jp

Comparisons to models

Our result is consistent with the prediction of the fluctuating- Γ model, but appears to disfavor the fluctuating- T_{IGM} model that predicts an overdensity in a high- τ region.

Exploring the tail end of reionization with deep HSC surveys

Summary

- We are carrying out LBG surveys with HSC around seven quasar fields.
- The first result: evidence of a highly opaque void, giving some constraints on the reionization models.
- Almost all the required data are now under analysis.
 We will be able to achieve a conclusive statement soon.