Subaru UM FY2020 2020/3/3-5

The average MIR-FIR properties of protoclusters at z~4

Mariko Kubo (Ehime University)

Jun Toshikawa, Nobunari Kashikawa, Yi-Kuan Chiang, Roderik Overzier, Hisakazu Uchiyama, David L. Clements, David M. Alexander, Yuichi Matsuda, Tadayuki Kodama,Yoshiaki Ono, Tomotsugu Goto, Tai-An Cheng, and Kei Ito

Introduction Environmental dependence of galaxies today

Introduction Protoclusters

Overdense regions at high redshift evolve into clusters of galaxies today

> Cosmic SFR density peaks at z=2-4 (Passively evolving galaxies have also appeared)

Protoclusters at z=2-4 are important laboratories.

From Millennium simulation

Introduction Protoclusters

Many protoclusters have been discovered. The selection methods and the observed properties range widely.

Large scale structure of LAEs at z=3.09 protocluster (Yamada et al. 2012) Originally found as LBG overdensity in general field.

Protocluster around a radio galaxy at z=2.48 found with HAEs (Tanaka et al. 2011)

SMG overdensity in the SSA22 protocluster at z=3.09

Protocluster at z=2.16 selected with Planck (Koyama et al. in arXiv)5/15

Introduction

What we need?...Uniform selection, large statistics, and IR

Protoclusters have a wide range of properties even at the same redshift. Number of the known protoclusters are limited. In addition, selection methods is not uniform...It is hard to compare them.

• Wide and systematic survey is required: ~ 1 protocluster in 1 deg²

Properties in optical do not give the whole picture even at z~3 (dusty starburst, quiescent galaxies, AGNs etc...).

Multi-wavelength observations are needed.

Especially, dust re-emission in IR is very important. But there is no working telescope capable for high-z galaxies at MIR-FIR.

How to study protoclusters statistically in IR?

Large and uniform catalog of protoclusters:

Wide wavelength coverage in IR: Full or wide IR sky surveys "in archive", Planck, IRAS, AKARI, WISE and H-ATLAS

Planck (and other archives) stacking analysis of HSC protoclusters

Planck stacking analysis of HSC protoclusters

Sample: The first systematic protocluster survey in optical

Systematic protocluster survey with HSC-SSP (Toshikawa et al. 2018) 179 protocluster candidates at z~4 are selected based on the overdensities of g-dropout galaxies in 121 deg2 of HSC SSP PDR1 Wide. Expected to be the progenitors of M_halo >10^14 M_sun clusters.

Planck stacking analysis of HSC protoclusters Method

Planck, IRAS, AKARI, WISE and H-ATLAS

Size of protoclusters ... several arcmin

= low (<5') spatial resolution sky maps in IR

Planck stacking analysis of HSC protoclusters Method

- 5. Taking the average and standard deviation of aperture photometry of bootstrap resampling as the value and noise.
- 6. Finally, the aperture flux is converted into total flux with the aperture correction factor evaluated by using the H-ATLAS image.

Planck stacking analysis of HSC protoclusters Result

Kubo et al. 2019

Planck stacking analysis of HSC protoclusters Result

Discussion 1. What is the origin of the IR emission?

SED fitting with 3 models:

- 1. SFG(MAGPHYS: da Cunha et al. 2008)
- 2. AGN torus(Siebenmogen et al. 2015)

3. SFG(Td=40K or typical SFG)+AGN

Young dusty starburst with Td~70 K and SFG(40K) +AGN are equally good.

The total SFR of a protocluster is $16.3^{+1.0}_{-7.8}$ and $2.1^{+6.3}_{-1.7}$ x 10^3 Msun/yr for SFG and SFG+AGN models, respectively.

Discussion

2. Evolution of total SFR of protoclusters/clusters

At least, the total IR luminosities of massive clusters continues to increase at up to $z\sim4$.

Conclusion and future work

- We successfully show the average IR SED of a protocluster at z~4 for the first time by stacking the IR archival images of HSC-SSP selected protoclusters.
- The total IR luminosity from a protocluster is ~3 times higher than that expected from optically selected galaxies.
- The average SED of a protocluser shows more warm dust component than that of typical SFGs. The over density of young hot SFGs with Td~70 K and/or AGNs is required.
- Though there is the uncertainty in the contribution of AGNs, at least, the IR luminosity of a protocluster continue evolves at up to z~4
- The MIR-FIR properties of protoclusters are quite essential !!
- ✦ Future works:
 - SFG?AGN? Characterize them in individual protoclusters in NIR/mm
 - The average evolution across comic time? Here we studied only 121 deg² of HSC-SSP. Our study can be expanded with the later release of HSC-SSP, and

future wide surveys with Rubin Observatory, Euclid and Roman Space telescope.