

Subaru Users Meeting FY2020, March, 3-5, 2021

Overview of AO activities at Subaru telescope

Yoshito Ono (Subaru)

Yosuke Minowa, Christophe Clergeon, Olivier Guyon, Julien Lozi, Sebastien Vievard, Vincent Deo, Kyohoon Ahn, Takashi Hattori (Subaru), Akiyama Masayuki, Koki Terao, Hajime Ogane (Tohoku Univ.)

AO upgrades in the next 2-3 years

- 1. Provide improved performance and new AO capabilities
- 2. Improve efficiency and flexibility of AO operation

3. Technical demonstration for ULTIMATE-Subaru and TMT-PSI

Related posters for details of each projects

[p02] ULTIMATE-START : project status
[p07] Prototyping TMT exoplanet imaging instrumentation at Subaru Telescope
[p15] SCExAO: status of the instrument, testbed and system-level demonstrator for PSI
[p18] Scalable, spectrally dispersed and multi-baseline nulling interferometry with photonic-based technology: the GLINT instrument
[p19] Subaru Laser Guide Star Upgrade: Current Status and Schedule toward the Open Use
[p31] FIRST, a Pupil-Remapping Fiber interferometer at the Subaru Telescope : Results and Future plans

Akiyama Masayuki Olivier Guyon Julien Lozi

Marc-Antoine Martinod Yosuke Minowa Sebastien Vievard

AO upgrades in the next 2-3 years

Phase 1 : Upgrade AO188 (to AO3K)

- New laser guide star system
- DM upgrade
- Near-Infrared Wavefront Sensor

Phase 2 : Advanced AO platform

- Nasmyth IR beam switching system
- ULTIMATE-START LTAO system (LTAO WFS, 4 LGS system)
- Upgrade visible WFS

Subaru Users Meeting FY2020, March, 3-5, 202

Current Configuration at NsIR

Subaru Users Meeting FY2020, March, 3-5, 2021

Phase 1 upgrade

Phase 1 upgrade

• Install a new bright laser system

Phase 1 : New laser system

• Much better AO performance, thank to 22W powerful laser

- Better stability and easier operation and maintenance
- Installation : February, March, and April 2021
 - New mirror-based relay system will be installed to the telescope
 - 2 x 3 days downtime (February and March)
- Commissioning : April and May 2021
- Open-use : 22A

Mechanical design of the laser relay system

See poster [p19]

Phase 1 : New laser system

- Much better AO performance, thank to 22W powerful laser
- Better stability and easier operation and maintenance
- Installation : February, March, and April 2021
 - New mirror-based relay system will be installed to the telescope
 - 2 x 3 days downtime (February and March)
- Commissioning : April and May 2021
- Open-use : 22A

Mechanical design of the laser relay system

Timelapse for laser installation work on Feb.25-Feb.27

See poster [p19]

Phase 1 upgrade

• Install a new bright laser system

ullet

Install a new bright laser system

Phase 1 upgrade

Phase 1 : 64x64 DM and NIR WFS

- Replace AO188 DM to ALPAO 64x64 DM (AO3K)
 - DM resolution is dramatically improved from 188 to 3228
 - We will receive the DM at Hilo this summer
 - Installation : 21B-21A
- Near-infrared Pyramid WFS in AO188
 - Wavefront sensing in J, H or J+H.
 - Better sky-coverage where NGS is bright in NIR (e.g GC)
 - Extreme performance in combination with DM64x64
 - WFS resolution will be adjustable by software
 - Installation : this summer Commissioning : S21B-S22A Open-use : S22B

Subaru Users Meeting FY2020, March, 3-5, 2021

Phase 2 upgrade

Phase 2 upgrade

• Install a Nasmyth beam switcher

Phase 2 : Nasmyth beam switcher (NBS)

- Optical relay to redirect the beam from AO188 to downstream instruments.
 - Easy instrument exchange. No more craning work.
 - Flexible instrument exchange for queue-mode observation (best seeing: SCExAO, moderate seeing: IRCS)
 - New observation mode with a dichroic mirror (e.g. IRCS + SCExAO simultaneous observation)
- Final design will be completed soon. Fabrication and assembly cost is being requested.
- Its installation to the NsIR platform will be sometime in 2022. We may need to request some NsIR downtime for the installation and commissioning.

Phase 2 upgrade

• Install a Nasmyth beam switcher

ullet

Phase 2 upgrade

Phase 2 : ULTIMATE-START LTAO system

- Laser Tomography AO mode (LTAO)
 - Tomographic wavefront control with 4 LGSs and 4 WFSs
 - Much better performance compared to single-LGS AO mode (especially at visible wavelength)
- Install a LTAO WFS unit between AO188 and Namyth beam switching system. Reuse 64x64 DM and low-order WFS in AO3K. Modify LLT to split a laser beam to 4 beams.
- Engineering observation without Nasmyth beam switcher and science instruments will start in 22A.

ullet

Phase 2 upgrade

ullet

Phase 2 upgrade

Technical demonstration for ULTIMATE and TMT-PSI

ULTIMATE-Subaru GLAO and LTAO system

- ULTIMATE-START is a precursor for ULTIMATE-Subaru to demonstrate the key technology for GLAO and LTAO systems
 - Multiple LGS system, Multiple WFS system, tomography, real-time control system

TMT-PSI (High-contrast imaging at TMT)

- PSI-blue (ExAO in visible wavelength) is still very challenging part
- AO3K+SCExAO will be the scale-down testbed to develop technologies for PSI-Blue (See poster [p07])
- Several developments for high-contrast observation are ongoing with SCExAO (See poster [p15], [p18], [p31])

AO3K+SCExAO configuration

Phase 1

- 22W new laser guide star system (21B~)
 - SR > 0.5 in K
- NIR WFS and 64x64 DM (S22B~)
 - Wavefront control in NIR wavelength
 - Extreme AO performance (AO3K)

Phase 2

- Nasmyth IR beam switcher (sometime in 2022)
 - Easy and flexible instruments selection behind AO188
- ULTIMATE-START LTAO system (in 2023)
 - \circ \quad Good AO correction in visible wavelength with LGSs
- Visible WFS upgrade in AO188

