Ly α (&UV) halos of Ly α emitters across environments at z=2.84

Satoshi KIKUTA

(NAOJ/Sokendai → University of Tsukuba, CCS) kikutast@ccs.tsukuba.ac.jp

& Yuichi Matsuda, Renyue Cen, Charles Steidel, Tomoki Saito

Subaru Users' Meeting FY2020 20210304

Circumgalactic/Intergalactic Medium (CGM/IGM) and Lyα halo (LAH)

- Gas accretion along the cosmic web governs early galaxy evolution
- Obs. of the IGM/CGM (=fuel for SF) is very important
- Can be observed with Lyα emission as
 Lyα halo (LAH)

Lyα halos of LAEs across environments

• Are LAHs larger in denser environments?

If so, this has implications for the environmental segregation at z=0

But no consensus yet!

- Target obs. for more PCs are required
 - Huge FoV of **HSC** enables us to simultaneously probe various environments

Target Field & LAE Detection

Target: the HS1549 protocluster @ z=2.84) hyperluminous QSO HS1549+1919 is at its center (e.g., Steidel+11, Mostardi+13)

Observed with **Subaru/HSC**, g(**2.2hr**) and NB468(**6.3hr**)^{\circ} \rightarrow Data reduced with HSC pipeline (hscPipe 4.0.5)

Source detection & photometry with Source Extractor (Bertin & Arnouts 96)

- LAE selection criteria (2.815<z<2.887):
 - NB < $26.57(5\sigma)$
 - G NB > max{0.5, 0.1+4 σ (G-NB)} (rest EW_{Lya} >12Å)

→ 3490 LAEs found

Mostardi+13

HS1549 Field

150 Galaxies, $z \ge 1.6$

Distribution of LAEs & LABs

- Filamentary structure
- Overdensity at the center
 - see Kikuta+2019, PASJ, 71, L2

Stacking Analyses

- Use cutout Ly α images of LAEs (sky mesh size=30") with continuum sources masked
- Stack Lyα & continuum images with IRAF imcombine (median, no clipping)
- Sky noise behaves well (noise $\propto \sim N^{-1/2}$)
- "Non-LAE" sample is constructed to check total systematics (see Momose+14)
- Detect diffuse Lyα emission down to ~10⁻²⁰ erg/s/cm²/arcsec²

Lyα Cont.

LAH Dependence on Various Properties

- Divide LAEs into 5 groups according to their photometric properties
- "Distance from the HLQSO" is for checking the impact of strong radiation field made by the QSO
- Note the correlations between quantities

quantity	criteria	N
UV magnitude	$M_{\rm UV} < -19.2$	690
	$-19.2 < M_{\rm UV} < -18.6$	696
	$-18.6 < M_{\rm UV} < -18.0$	773
	$-18.0 < M_{\rm UV} < -17.4$	648
	$-17.4 < M_{\rm UV}$	683
Ly α luminosity	$42.25 < \log L_{\mathrm{Ly}\alpha}$	647
	$42.05 < \log L_{\mathrm{Ly}\alpha} < 42.25$	833
	$41.95 < \log L_{\mathrm{Ly}lpha} < 42.05$	610
	$41.85 < \log L_{\rm Ly\alpha} < 41.95$	645
	$\log L_{\mathrm{Ly}lpha} < 41.85$	755
Ly α equivalent width	$EW_{0,Lylpha} < 30 \text{\AA}$	686
	$30\text{\AA} < \text{EW}_{0,\text{Ly}lpha} < 55\text{\AA}$	727
	$55\text{\AA} < \text{EW}_{0,\text{Ly}lpha} < 90\text{\AA}$	698
	$90\text{\AA} < \text{EW}_{0,\text{Ly}lpha} < 160\text{\AA}$	735
	$160\text{\AA} < \text{EW}_{0,\text{Ly}lpha}$	644
Environment	$2.5 < \delta$	55
	$1.0 < \delta < 2.5$	433
	$0.3 < \delta < 1.0$	944
	$-0.15 < \delta < 0.3$	1076
	$-1.0 < \delta < -0.15$	982
Distance from the HLQSO	$d_{\rm Q} < 6.2 \ { m pMpc}$	679
	$6.2 \text{ pMpc} < d_Q < 9.5 \text{ pMpc}$	739
	$9.5 \text{ pMpc} < d_{\mathrm{Q}} < 12.0 \text{ pMpc}$	633
	$12 \text{ pMpc} < d_{\text{Q}} < 14.8 \text{ pMpc}$	778
	14.8 pMpc < $d_{\rm Q}$ < 18.0 pMpc	661

Fitting exponential functions

- SB radial profiles are fit with the following functions:
 - 2-component exponential: PSF*(C₁×exp(-r/r₁))
 - **1-component exponential**: $PSF^*(C_1 \times exp(-r/r_1) + C_2 \times exp(-r/r_2))$
 - **Power-law**: $PSF^*(C_1 \times r^{-\alpha})$ as suggested by a model in Kakiichi & Dijkstra 2018

Fitting exponential functions

- **2-comp exp. functions are needed for Lyα SB profiles**, while 1-comp exp. functions are enough for UV in most cases
- Brightest (in Lyα/UV) / lowest-EW LAEs have the UV 2nd component
- Power-law sometimes fails to capture the transition from 1st to 2nd component

Results of Fitting

- Lya/UV 1st components correlate with $M_{UV},\,L_{Lya},\,EW$
 - Brighter LAEs have larger cores
- Ly α 2nd component behaves stochastically
- Protocluster sample (δ >2.5) stands out

Relation between scalelengths r_{1,UV}, r_{1, Lya}, r_{2, Lya}

• Correlation found only for $r_{1,UV}$ - $r_{1,Ly\alpha}$

- $r_{2,Ly\alpha}$ is difficult to predict

- Common assumption of $r_{1,UV} = r_{1,Lya}$ is not valid (gray line: 1:1 rel.)
 - Caution: small value for $r_{1,UV}$ may be just due to nondetection in continuum images

Insights into the Origin of LAHs

- First detection of the UV 2nd component (r < 40 pkpc) offers direct evidence for a contribution from satellite SF
 - Agree with recent simulation results (Byrohl+20, Mitchell+20, Lake+15)
 - Can be tested with JWST by seeing if "H α halos" exist or not
- To determine the origin of LAH at larger radii, deeper obs. & comparison with simulations are needed
 - Precise behavior of $r_{2,Ly\alpha}$ and $r_{2,UV}$ must be derived both from obs & sim
 - Predictions for cold stream contribution vary a lot

Origin of the Large LAH in PCs

- Overlapping of galaxies or UV brightness of the PC LAEs cannot fully explain the large LAH
- We further divide the PC sample into near/far from the QSO sample
 - Far sample no longer has a very large LAH
 - Near sample shows an even larger LAH
- Diffuse emission around the PC core may be the cause

Take home message about LAH

- Sensitivity close to 1e-20 erg/s/cm²/arcsec² is necessary for safe argument (at z~3) – NB stacking with Subaru/HSC is still a powerful tool in the era of sensitive IFUs!
- Ly α SB profiles are well fit with 2-component exponential functions
- We found "UV halos" around bright/low-EW LAEs
 - demonstrates **satellite SF** as important contributor
- $r_{1,Ly\alpha}$ and $r_{1,UV}$ correlate, but $r_{2,Ly\alpha}$ does not correlate with any photometric property insufficient S/N?
- No dependence on large-scale environments except for PCs
 - very large LAHs may emerge in PCs at cosmic noon due to diffuse Lyα emission from the structure
- Comments welcome! Slack or email kikutast@ccs.tsukuba.ac.jp