High-resolution spectroscopy of halo stars with asteroseismic information

Tadafumi MATSUNO (University of Groningen)

Collaborators: W. Aoki, L. Casagrande, M. N. Ishigaki, J.R. Shi, M. Takata, M.S. Xiang, D. Yong, H.N. Li, T. Suda, Q.F. Xing, J.K. Zhao

Matsuno+21, accepted, arXiv:2006.03619

Nearby halo populations See also Nissen & Schuster 10 (NS10) High-precision abundance study of nearby halo stars

High α: star formation without SN Ia contributions
➡ short timescale star formation
➡ star formation in a massive galaxy (MW)

Additional information: age

Formation epoch of stellar population Abundance provides timescale not "epoch"

Timing the last major merger

When a larger galaxy accreted, accreted stars Star formation stops In-situ stars Stellar Kinematics changes

Belokurov+19

Milky Way halo

Schuster+12 age study of NS10 stars

High-α stars are older i.e., less time since Big Bang consistent with abundance

Both are older than ~10 Gyr

the last major merger would be quite ancient (see e.g., Belokurov+19)

Most of these results are mainly from nearby stars (<300pc)

Asteroseismology: age of red giants

Our observation

Instrument

High Dispersion Spectrograph on Subaru

Setting R~80000 (~4 km/s) 4000 < λ (A) < 6800

Targets 26 halo stars in the Kepler field from LAMOST and APOGEE

Use of high-resolution spectra

- Teff determination
- Classifying the targets into low- α /high- α
- Additional constraints on formation timescales

Assigning populations

We need to understand the population of our sample halo has (at least) two major populations

Background: NS10, Reggiani+17

Timescale of high- α /low- α populations from α abundances

 $\frac{[\alpha/Fe] \text{ difference}}{\text{Less la contribution in high-}\alpha}$

SN Ia should contribute at least to the low- α population $\tau_{low-\alpha} > 100 \text{ Myr}$

Decreases with time thanks to delayed Fe enrichment by SN Ia

* High- α population has, if any, little Ia contribution

Timescale of high- $\alpha/low-\alpha$ populations from neutron capture abundances

Consistent [Eu/s]

If either of the two populations is enriched by 1-3 Msun stars, the timescale difference would make a difference **Neither of the populations is** enriched by 1-3 Msun stars $\tau_{high-\alpha}, \tau_{low-\alpha} < 300$ Myr

Decreases with time thanks to delayed Ba, La, Ce enrichment by 1-3 Msun stars

See also Fishlock+17

Age estimates from asteroseismology

Age is based on mass estimates

Scaling relations of asteroseismology $\sqrt{\nu_{\text{max}}} \propto \frac{g}{\sqrt{T_{\text{eff}}}} \propto \frac{M}{R^2 \sqrt{T_{\text{eff}}}}$ $\Delta \nu \propto \sqrt{\bar{\rho}} \propto \sqrt{M/R^3}$ $M \propto v_{\rm max}^3 \Delta v^{-4} T_{\rm eff}^{1.5}$ Stellar evolution **Stellar** age Can be applied to red giant stars

Relative mass/age of the populations

The age difference is no greater than 1.5 Gyr (1 σ) The two populations are formed at similar epoch

The absolute age could not be constrained due to large systematic error

Summary of the results

Halo stars with asteroseismic information are divided into two from precise chemical abundance obtained from HDS spectra

We estimate the formation timescale of the low- α population as 100 Myr < τ < 300 Myr from precisely-measured chemical abundance

We constrain the formation epoch difference between low- α / high- α populations as <1.5 Gyr from asteroseismology