## New Targets for NASA's New Horizons a new collaboration with Subaru.

Kavelaars, J., Yoshida, F., Fraser, W., Verbiscer, A., Spencer, J., Stern, A., Porter, S., Takashi, I., Hong, P., Benecchi, S. Buie, M.



#### NH/LORRI : 21cm aperture / 1 M-pixel



Figure 1 (left) LORRI telescope assembly, showing SiC mirrors and metering structure; (right) LORRI composite baffle and flexure mount on test stand



#### Subaru/HSC: 8200cm aperture / 900 M-pixel







Ralph

Student Dust Counter (lower deck)

### New Horizons

REX



#### New Horizons Full Trajectory - Overhead View Distance from Sun (AU): 32.24 Heliocentric Velocity (km/s): 14.57

Distance from Earth (AU): 31.90 Distance from Pluto (AU): 0.64 Round-Trip Light Time (hh:mm:ss): 08:50:39 25 Apr 2015 02:00:00 UTC

# Uranus Jupiter rann Neptune Saturn ew Horizons Pluto

![](_page_5_Picture_0.jpeg)

![](_page_6_Picture_0.jpeg)

## Arrokoth

![](_page_7_Figure_0.jpeg)

![](_page_8_Figure_0.jpeg)

#### Earth based observations Confined to low phase

- Some show surge effects
- Difficult to determine slope of phase variation
- Some variability in serge effect, perhaps indicative of macroscopic features
- Most of the area of the phase integral is not visible.

![](_page_9_Figure_5.jpeg)

Earth localized observations, include HSC observations

![](_page_10_Figure_0.jpeg)

#### **Phase Integral** Albedo and Surface Roughness

- $A_{Bond} = q^*p$
- Probing the bulk properties of surface texture
- Light Curves from large phase reveal additional shape constraints.

![](_page_11_Figure_4.jpeg)

#### **Phase Integral** Albedo and Surface Roughness

- $A_{Bond} = q^*p$
- Probing the bulk properties of surface texture
- Light Curves from large phase reveal additional shape constraints.

![](_page_12_Figure_4.jpeg)

### **More Targets Needed TNO number density drops rapidly beyond 47au**

![](_page_13_Figure_1.jpeg)

Date of Search

Total number of objects observable from New Horizons

#### **More Targets Needed** Subaru/HSC is the best telescope/instrument for this project

- Require targets brighter than V=20 when seen from New Horizons
- Faint from group but bright at New Horizons if close to the spacecraft.
- Search to r' < 27 would be ideal, but New Horizons is in the direction of the galactic centre, crowded field: goal r' < 26.5</li>
- Proposed 2020 collaboration with Subaru to achieve 15 1/2-nights of time to enable search and tracking of 2 fields.
- Anticipate 10 to 20 New Horizons observable candidates if r < 26.5 achieved.</li>
- Careful and flexible scheduling of time achieved through collaboration.

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

![](_page_15_Picture_2.jpeg)

![](_page_15_Picture_3.jpeg)

![](_page_15_Picture_10.jpeg)

**JJ Kavelaars** @jjkavelaars

A night zoomed into the Ostalescope control room searching for @NewHorizons2015 KBO targets. Tonights image of sky (thanks @GeminiObs) around 2AM Hawaii time shows Saturn, Jupiter. Small black box is the truly enormous Subaru-HSC field of view, our KBO search area

7:11 AM · May 30, 2020 · TweetDeck

 $\uparrow ]$ 

 $\bigcirc$ 

|| View Tweet activity

**18** Retweets **51** Likes

 $\bigcirc$ 

![](_page_15_Figure_16.jpeg)

![](_page_15_Picture_17.jpeg)

#### **Needle in a haystack** But there are 10s of needles per square degree

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_17_Picture_0.jpeg)

Masking based on locations of bright stars (from GAIAI)

![](_page_17_Picture_2.jpeg)

![](_page_17_Picture_3.jpeg)

![](_page_17_Picture_4.jpeg)

#### **Shift-and-Stack** Faint KBO detection

- Using LSST difference imaging pipeline a template image was constructed for each night.
- Template subtracted from each image to create difference image
- Bright stars in difference image masked
- Each difference in series is shifted in RA/DEC to account for the object motion relative to a reference frame.
- Median stacks at a variety of shift rates are produced.

![](_page_18_Picture_6.jpeg)

high

angle

<u>s</u>

#### Shift and Stack by the numbers First confirmed detections achieved just weeks after first data.

- 2 Fields
- 12 half nights of observing
- 60 images per session
- 91 shift/angle rate sets 3 stacks per set -> 28392 images to search through per night • 32,000 candidate detections to visually inspect
- 50 operators vetting images in Canada, Japan, USA and elsewhere over weeks of time
- 74 sources detected
- 7 observable from New Horizons

#### New KBOs 7 New Horizons targets

- Discovered with Subaru/HSC in June 2020 data
- Tracked with HST to refine orbit in October 2020
- First targets observed from New Horizons in December 2020
- Continuing to observe at more phase angles through end of summer 2021.

![](_page_20_Picture_5.jpeg)

# Use M/L for source classification

![](_page_21_Figure_1.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

high

stack 0 2 The same states of the 

#### **True Positive**

NO

angle

![](_page_22_Figure_4.jpeg)

#### **False Positive**

### **Convolutional Neural Network Source classification**

- Major time cost in visual inspection/vetting of candidate sources.
- CNN classification of images provides 85% True Positive rate.
- Possible due to large numbers of artificial sources added to images and test suite from human operator vetted candidates.

![](_page_23_Figure_4.jpeg)

![](_page_23_Picture_5.jpeg)

### **Convolutional Neural Network Source classification**

- Major time cost in visual inspection/vetting of candidate sources.
- CNN classification of images provides 85% True Positive rate.
- Possible due to large numbers of artificial sources added to images and test suite from human operator vetted candidates.

![](_page_24_Figure_4.jpeg)

![](_page_24_Picture_5.jpeg)

# **Results from M/L re-analysis**

- 28 additional TNOs located using M/L approach, about 2/3rds of data re-analyzed thus far.
- 2 nominal NH targets found among those 28 new discoveries.
- Tracking observations using HST, to refine orbit and allow NH targeting, now being scheduled.

- Investigating stacking acrossnights using M/L analysis approach.
- Preliminary science results from ground based search emerging (remain preliminary as M/L analysis is providing increasing sample size)

![](_page_25_Picture_6.jpeg)

### **Deepest on ecliptic search to-date:** probing a previously hidden?

![](_page_26_Figure_1.jpeg)

distance (au)

**Distance at Discovery** 

### **Deepest on ecliptic search to-date:** probing a previously hidden?

![](_page_27_Figure_1.jpeg)

![](_page_27_Picture_2.jpeg)

3 objects at distance beyond 55 au detected!

OSSOS model of outer solar system expectation was for less than 1.5 objects at distance beyond 55 au (95% confidence).

![](_page_27_Picture_7.jpeg)

#### Survey 2021 begins.... Fresh sky.

- 21A NOAJ deadline missed team fully committed to 20A/B data analysis. Gemini-Subaru Exchange proposal not possible to schedule in 21A (HSC is
- too popular!)
- Keck-Subaru Exchange proposal schedule as 2 half nights.
- Proposal for 21B D time and 21B NOAJ time submitted.
- Keck and Gemini Exchange proposal in preparation.