Search for Planets like Earth around Late-M Dwarfs: Precise Radial Velocity Survey with IRD

PI: Bun'ei Sato (Tokyo Institute of Technology) Co-PI: Nagayoshi Ohashi (NAOJ, Subaru)

E. AKIYAMA¹, W. AOKI², C. BEICHMAN³, T. BRANDT⁴, G. CATALDI⁵, C. CLERGEON⁵, T. CURRIE⁵, R. DONG⁶, Y. FUJII^{7,8}, H. FUJIWARA⁵, A. FUKUI², H. GENDA^{7,8}, T. GROFF⁹, O. GUYON^{5,10,11}, D. HALL³¹, H. HARAKAWA², J. HASHIMOTO^{2,11}, Y. HAYANO², M. HAYASHI², K. G. HEŁMINIAK¹², T. HENNING¹³, T. HIRANO⁸, K. HODAPP³¹, Y. HORI^{2,11}, Y. IKEDA¹⁴, S. INUTSUKA²⁴, H. T. ISHIKAWA²¹, M. ISHIZUKA¹⁵, H. IZUMIURA², S. JACOBSON³¹, M. JANSON¹⁷, N. JOVANOVIC²³, E. KAMBE², H. KAWAHARA¹⁵, T. KODAMA¹⁵, Y. KOIZUMI⁸, E. KOKUBO², M. KONISHI^{2,11}, T. KOTANI^{2,11}, T. KUDO², T. KUROKAWA^{2,11}, N. KUSAKABE^{2,11}, M. KUZUHARA^{2,11}, J. KWON¹⁶, C. LEE⁵, J. LIVINGSTON¹⁵, M. MACHIDA²⁸, T. MATSUO²⁷, D. MAWET²³, M. MCELWAIN⁹, V. MEADOWS²⁹, E. MIEDA⁵, T. MIZUKI¹⁶, J. MORINO², T. NAGATA²⁰, T. NAKAGAWA¹⁶, T. NAKAJIMA^{2,11}, N. NARITA¹⁵, J. NISHIKAWA^{2,11,21}, S. NISHIYAMA¹⁸, H. NOMURA⁸, M. OGIHARA², D. OH²⁵, M. OMIYA^{2,11}, S. OSHINO², T. PYO⁵, E. SERABYN³, M. SITKO¹⁹, H. SUTO^{2,11}, R. SUZUKI², Y. TAKAGI⁵, H. TAKAMI², T. TAKARADA⁸, N. TAKATO², M. TAMURA^{2,11,15}, Y. TANAKA³⁰, H. TERADA², R. A. TORRES¹⁷, E. L. TURNER²², A. UEDA², T. UYAMA¹⁵, S. VIEVARD⁵, J. WANG²³, J. WISNIEWSKI²⁶, AND Y. YANG²¹

 Hokkaido University; 2. NAOJ; 3. JPL/Caltech; 4. UC Santa Barbara; 5. Subaru Telescope; 6. University of Victoria; 7. ELSI; 8. Tokyo Institute of Technology; 9. NASA Goddard; 10. University of Arizona; 11. Astrobiology Center, NINS; 12. Nicolaus Copernicus Astronomical Center; 13. MPIA; 14. Photocoding; 15. University of Tokyo; 16. ISAS/JAXA; 17. Stockholm University; 18. Miyagi University of Education; 19. Space Science Institute; 20. Kyoto University; 21. SOKENDAI; 22. Princeton University; 23. Caltech; 24. Nagoya University; 25. National Meteorological Satellite Center; 26. University of Oklahoma; 27. Osaka University; 28. Kyushu University; 29. University of Washington; 30. TUAT; 31. University of Hawaii, IfA

Summary

- InfraRed Doppler instrument (IRD)
 - A high-dispersion (R=70,000) near-infrared spectrograph for Subaru telescope
 - **RV** precision of $\sim 2 \text{ m/s}$ is achievable for M dwarfs
- IRD-SSP
 - We aim at detecting earth-mass (~1-3M_{earth}) planets in habitable zone around late-M dwarfs, and unveiling planet population in wide range of mass and orbit around late-M dwarfs
 - We expect to find ~60 planets in 60 sample stars by 5-year (175 nights; 35 nights/year) survey.
 - The full 5-year survey is now approved.
 - Observations have been conducted almost every month since \$19A.
 - The initial screening observation has been almost completed and intensive monitoring for some targets has started.

Overview of the IRD instrument

GJ 436 (M3V)

July, 2018

Long-term monitoring of an RV standard, Barnard's Star (M4V)

*The data with low comb-intensity are excluded.

Detailes of RV-analysis procedure for IRD are presented in Hirano et al. (2020)

Brief summary of 2019-2020

Allocated nights

- **S**19A: 16.5
- □ S19B: 17.5
- **S20A: 17.5**
 - suspended : 2.5nights (COVID-19)
- **S20B: 19.5**
 - □ ToO: 0.5nights
- Rough success rate
 - □ S19A: ~77%
 - □ S19B: ~60%
 - □ S20A: ~75%

□ S20B: ~68%

Current progress of observation

	observed stars
stars observed once	26
stars observed twice	11
stars observed 3-9 times	74
stars observed >10 times	14

Sample selection

- D<25pc, M=0.08-0.25 $_{\odot}$, J<11.5, no Ha emission (1st screening)
 - → 149 stars were selected by low-resolution spectroscopy. (e.g. Koizumi et al. 2021, PASJ, 73, 154)
- Double-line spectroscopic binaries and rapid rotators will be screened out by initial observations with IRD (2nd screening)
 - \rightarrow Best 60 stars will be selected for IRD survey.

38 stars have been selected so far and intensive monitoring for them has started.

Screening: AO images

- □ To check existence of visual companions in the images of IRD-FIM
- \square e.g. A companion with contrast ratio 1:7 = M4 : M7
 - Angular separation = 0.2", distance 17.7pc → 3.5AU (P~13.5yr)

Screening: Spectral shape

RV scatters measured with IRD

Summary

- InfraRed Doppler instrument (IRD)
 - A high-dispersion (R=70,000) near-infrared spectrograph for Subaru telescope
 - **RV** precision of $\sim 2 \text{ m/s}$ is achievable for M dwarfs
- IRD-SSP
 - We aim at detecting earth-mass (~1-3M_{earth}) planets in habitable zone around late-M dwarfs, and unveiling planet population in wide range of mass and orbit around late-M dwarfs
 - We expect to find ~60 planets in 60 sample stars by 5-year (175 nights; 35 nights/year) survey.
 - The full 5-year survey is now approved.
 - Observations have been conducted almost every month since \$19A.
 - The initial screening observation has been almost completed and intensive monitoring for some targets has started.