

### **ULTIMATE-Subaru:** Sub **Project Overview and Current Status**

#### **ULTIMATE-Subaru team:**

Yusei Koyama, , Kentaro Motohara, Ichi Tanaka, Yoshito Ono, Takashi Hattori, Christophe Clergeon, Shin Oya, Kenshi Yanagisawa, Yutaka Hayano, Michitoshi Yoshida (Subaru/NAOJ), Masayuki Akiyama, Tadayuki Kodama (Tohoku Univ.), Celine d'Orgeville, Noelia Martinez Rey, Gaston Gausachs, Francois Rigaut (ANU), Shiang-Yu Wang, Chi-Yi Chou, Masahiko Kimura (ASIAA)





UNIVERSITY







Yosuke Minowa (Subaru Telescope)

Australian National





#### **WIDE-FIELD + HIGH-RESOLUTION** NIR SURVEYOR WITH GLAO

NIR (K-band) facilities available in 2020s and beyond





2

#### **ULTIMATE-SUBARU OVERVIEW**

# **GROUND LAYER ADAPTIVE OPTICS AT SUBARU**



- ground only.



- turbulence layers)

(to be discussed in the ULTIMATE session on March 5<sup>th</sup>, JST)



### Improves seeing over wide-field of view (up to 20' at Subaru) by compensating turbulence close to the

### Expected seeing size with GLAO is FWHM~0".2 at K-band

### It is possible to further improve the seeing by narrowing field coverage (i.e. increasing the depth of the correcting

GLAO narrow-field mode (<10'):FWHM ~0".1 LTAO mode (several arcsec): diffraction limited \_TIMATE-SUBARU OVERVIEW

## **SUBARU GLAO SYSTEM: CONCEPTUAL DESIGN**

### (1) Adaptive Secondary Mirror

 $\phi = 1260$ mm deformable mirror with 924 actuators





### (3) Wavefront Sensors (LGS, NGS)



LGS: 4-32x32 SH WFS



(2)



### Laser Guide Star Facility

TOPICA fiber laser(589nm) x 2 Generate 4 laser guide stars





NsIR (FoV~14')

## **ADAPTIVE SECONDARY MIRROR PRELIMINARY DESIGN**

- Preliminary design of the ASM completed.
  - PDR with AdOptica conducted on Dec, 2020
  - All of the requirements not only for the GLAO, but also for the SCAO (more strict requirements) are satisfied with the current design.
  - Determined the specifications for the optical components (thin shell, reference body)
- Interface with the existing IRM2 mount is being confirmed with MELCO
- Final design phase is being started.
  - Mechanical final design in early FY2021
  - Electric/Control final design in mid-late FY2021
- ASM calibration system optical design is ongoing
  - Interferometer to measure the ASM shape
  - Closed-loop simulator in combination with the GLAO WFS









# **WFS/LGSF PRELIMINARY DESIGN**

Preliminary design study of the WFS/LGSF will be conducted in FY2021 in collaboration with ANU based on the CoDR design in 2018.



# **KEY TECHNOLOGY PROTOTYPING**

ULTIMATE-START project : Laser Tomography AO system with 4 laser beams





#### Implementation of the TOPTICA laser at Subaru telescope

(see poster p02 by M. Akiyama )

(see poster p19 by Y. Minowa )







## NEW WIDE-FIELD NIR INSTRUMENTS PLAN FOR ULTIMATE

### 2025 Phase 1

• Reuse MOIRCS at Ns. IR



MOIRCS

- $\cdot\,$  GLAO first light instrument
- FoV ~ 4' x 7' (0".12/pix)
- Wavelength: 0.9 2.5 um
- Imager/MOS spec (R500-3000)

### CoDR scheduled on June, 2021

2027 Phase 2

### • Wide-field imager (WFI) at Cs.



#### Imager conceptual optical design

- Workhorse instrument for large imaging survey
- FoV ~ 14' x 14' (~0".1/pix)
- Wavelength: 0.9-2.5 um
- Wide-variety of narrow/medium band filters

Science instruments for the narrow field mode is planned in parallel to the wide-field instruments (to be discussed in the ULTIMATE session on March 5th, JST)



### 2030 Set Phase 3

• Fiber-bundle multi-IFU at Cs



#### Multi-IFU concept by AAO

- Unique instrument for large kinematic survey like MANGA/SAMI.
- Feed to the existing spectrograph MOIRCS=R500-3000 or PFS (R=2000-5000)
- Patrol field: ~ 14' x 14'
- IFU FoV: 1".2 x 1".2
- Number of IFUs: 8-13
- · Wavelength: 0.9 1.8 um

## WIDE-FIELD IMAGER CONCEPTUAL DESIGN

- Completed conceptual optical and structure design that realizes 14'x14'
  FoV (Φ~20') with < 0".1 image quality at 0.9~2.5 micron.
  - 4 independent barrel design with square field lenses.
  - Equipped with 3 filter wheels that contains max. 15 filters per barrel.
  - Cryostat supported by truss structure to connect to the Subaru Cassegrain interface











## 5σ limiting magnitude with 5 hrs integration time

## **MOIRCS UPGRADE FOR ULTIMATE**

- MOIRCS will be relocated to NsIR to feed the GLAO corrected light and to have more stable platform for the MOS observation.
- Asymmetric Offner relay will be used to relay the telescope focus to the MOICS placed upright on the NsIR and to change the focal ratio.
- The relay optics will be cooled (T<240K) to avoid increasing thermal emission due to the additional reflection surfaces.
- Instrument rotator (INR) below MOIRCS to compensate for the field rotation.
- Conceptual design of the relay optics and the INR by ASIAA







#### ULTIMATE Subaru

## **GLAO PROJECT STATUS**

- GLAO is officially approved by NAOJ as one of the NAOJ's A project since FY2019
  - 2019-2021 : Preliminary Design Phase
  - 2022-2023 : Final Design Phase
  - 2023-2026 : Manufacturing, Assembly, Integration, and Test phase

- Complete the PDR by the end of FY2021 with a support from NAOJ
- ASM production will be started as soon as the GLAO PDR is completed.
- External fund is essential to start the fabrication of the rest of the systems (WFS, LGSF, Science instruments)



