PFS instrument and the SSP survey

1

Kiyoto Yabe (Kavli IPMU)

This talk includes the following topics:

- Brief summary of PFS instrument
- Brief summary of PFS SSP survey
- PFS instrument details
- SSP survey plan & simulations

Subaru Users Meeting FY2017, PFS operation session, 2018 Jan. 19 (Fri), Kiyoto Yabe (Kavli IPMU)

Summary of PFS instrument: overview

AB (red), ~21.4 AB (NIR) • Emission line (σ=70 km/s): ~1 x 10⁻¹⁷ erg/s/cm²

- Data Reduction Pipeline (DRP)
- Survey Planning & Tracking (SPT)

Subaru Users Meeting FY2017, PFS operation session, 2018 Jan. 19 (Fri), Kiyoto Yabe (Kavli IPMU)

Summary of PFS instrument: information

	Prime Fo	cus Instrume	nt	
Field of view	~1.38 de	g (hexagonal - dian	neter of circumscril	bed circle)
Field of view area		~1.2	5 deg ²	
Input F number to fiber		2	2.8	
Fiber core diameter ⁽¹⁾	127 µm (1.1	2 arcsec at the FoV	center, 1.02 arcse	c at the edge)
Positioner pitch	8 mm (90.4	arcsec at the FoV	center, 82.4 arcsec	at the edge)
Positioner patrol field	9.5 mm diameter	(107.4 arcsec at th	e FoV center, 97.9	arcsec at the edge)
Fiber minimum separation ⁽²⁾		~30	arcsec	
Fiber configuration time		~60-120	sec. [TBC]	
Number of fibers	Science	e fibers	Fixed fiducial fibers	
Number of fibers	23	194		96
Fiber density		~2000 deg ⁻²	/ ~0.6 arcmin ⁻²	
Number of A&G camera (3)			6	
Field of view of A&G camera		~5.1 arcmin ²	per one camera	
Sensitivity of A&G camera	r'~20.0	AB mag for S/N~30	(100) in 1 (10) sec.	exposure
	Spe	ctrograph		
Spectral arms	Blue	R	ed	NIR
spectrat arms	bide	Low Res.	Mid. Res.	
Spectral coverage	380 - 650 nm	630 - 970 nm	710 - 885 nm	940 - 1260 nm
Dispersion	~0.7 Å/pix	~0.9 Å/pix	~0.4 Å/pix	~0.8 Å/pix
Spectral resolution	~2.1 Å	~2.7 Å	~1.6 Å	~2.4 Å
Resolving power	~2300	~3000	~5000	~4300
Spectrograph throughput (4)	~53% (@500nm)	~57% (@800nm)	~54% (@800nm)	~33% (@1100nm)

http://pfs.ipmu.jp/research/parameter.html

PFS Expected Performance

The sensitivity information below is still preliminary and is subject to change in the future.

|--|

Moonlight Effects

Basic Information

		Wavelength range			Continu	um sensitivity ⁽²⁾	Emission	line sensitivity ⁽³⁾
	Arm	wavelength range	Throughput ⁽¹⁾	Resolving Power		[AB mag]	[10]	¹⁷ erg/s/cm ²]
		[nm]			mean ⁽⁴⁾	representative ⁽⁵⁾	mean ⁽⁴⁾	representative ⁽⁵⁾
		380 - 450	14%		22.0	22.1 (@415nm)	2.9	2.8 (@415nm)
	Blue	450 - 550	24%	~2300	22.4	22.5 (@505nm)	1.5	1.4 (@505nm)
		550 - 650	23%		22.1	22.2 (@605nm)	1.5	1.3 (@605nm)
		630 - 750	29%		22.2	22.5 (@680nm)	1.2	1.0 (@680nm)
	Low Res.	750 - 850	30%	~3000	22.0	22.4 (@796nm)	1.1	0.9 (@796nm)
Red		850 - 970	27%		21.6	22.1 (@912nm)	1.2	0.9 (@912nm)
Neu		710 - 775	26%		21.6	21.8 (@741nm)	1.3	1.1 (@741nm)
	Mid. Res.	775 - 825	28%	~5000	21.6	21.8 (@796nm)	1.1	1.0 (@796nm)
		825 - 885	27%		21.5	21.7 (@856nm)	1.2	1.0 (@856nm)
		940 - 1050	17%		20.9	21.5 (@993nm)	2.0	1.3 (@993nm)
	NIR	1050 - 1150	19%	~4300	21.0	21.4 (@1100nm)	1.6	1.2 (@1100nm)
		1150 - 1260	17%		20.9	21.3 (@1208nm)	1.5	1.2 (@1208nm)
e: The motio		es are based on th	e PFS exposure	time calculated	developed	d by C. Hirata <u>arXi</u>	v:1204.51	51 under the follo

http://pfs.ipmu.jp/research/performance.html

This repository Search	Pull requests	Issues Gist	₽ +• <u>1</u> .•
Subaru-PFS / spt_Expos	sureTimeCalculator	٥	Watch → 4 ★ Star 0 % Fork 0
<> Code ① Issues 1	🕆 Pull requests 0 🗉 Wiki 🕂 Pulse	🗓 Graphs 🔅 Settings	
PFS Exposure Time Calculato	r — Edit		
T 59 commits	ဖို 5 branches	\bigcirc 3 releases	🚨 3 contributors
Branch: master - New pull req	uest	Create new file Uple	oad files Find file Clone or download -
kiyoyabe committed on GitHu	ub Merge pull request #13 from Subaru-PFS/ticke	t/kiyoyabe20160703 ···	Latest commit 9cbfc73 on Jul 21
🖿 bin	Ignore machine-generated files		4 months ago
config	Write the m	//aithub.com/	/Subaru-PFS/spt_f
atamodel @ cf38363	Updated ve	/ gittiub.0011/	

Summary of PFS SSP survey: overview

- PFS Subaru Strategic Program
 - ► 300 nights (a possibility of +60 nights)
 - ► 3 science groups are now working
- Cosmology:
 - ~1400 deg² of HSC wide foot prints (TBD)
 - ► Targeting emission line galaxies at z=0.6-2.4 (TBD)
 - Main scientific goals
 - \checkmark Rule out the inverted hierarchy of neutrino masses
 - \checkmark Rule out the standard ΛCDM model by finding a time evolution of Ω_{Λ}
- Galactic Archaeology:
 - MW dwarf satellites / Andromeda halo stars / MW halo, stream, disk (TBD)
 - Measuring radial velocity & chemical abundances of stars in these targets
 - Main scientific goals
 - ✓ Measuring radial velocity & chemical abundances of stars in these targets to constrain the nature of dark matter and its role in the formation of galaxies

• Galaxy/AGN Evolution:

- Low-z (z=0.7-2) component / High-z (z=2-7) component
- ~14 deg² of HCS deep foot prints (TBD)
- Main scientific goals:
 - ✓ Measuring physical parameters of galaxies/AGNs residing in various environments and various redshifts
 - \checkmark Large-scale structures traced by HI gas and galaxies

Subaru Users Meeting FY2017, PFS operation session, 2018 Jan. 19 (Fri), Kiyoto Yabe (Kavli IPMU)

Summary of PFS SSP survey: timeline

PFS instrument details: fiber configuration

• Fiber configuration requirements:

- ► The configuration is finished in <105 sec. for 95% of all 2394 fibers
- ► The positioning error is <5 µm (~0.04 arcsec)

Cobra collisions:

- ► There are some collision patterns (see below)
- Some tests on the collision avoidance are in progress
- Minimum separation of cobras ~30 arcsec (including margins)

PFS instrument details: dot coverage

- Masked regions called as "dots" on the focal plane:
 - Used for the purpose of hiding some fibers when calibration images are taken (e.g., PSF reconstruction using arc images)
 - ✓ Diameter of 1.5 mm and coating reflectance of ~20%
 - ✓ Minimum distance from dot to fiber without light loss is 1.375mm
 - ✓ The blocked region is 2.75 mm diameter (~30 arcsec; ~8% of patrol area)
 - ► We cannot observe objects in the blocked region

PFS instrument details: auto guiding system

• Auto guiding system:

- ► The auto guiding by 6 AG cameras around the FoV
 - ✓ Area of each camera: ~5 arcmin²
 - ✓ Wavelength coverage: 400 800 nm
- We expect to detect >4 guide stars with SNR>30 with 1 sec exposure anywhere on the sky (based on SDSS data)
- Pointing and position angle may be somewhat restricted (especially in high Galactic latitude)

PFS instrument details: instrument rotator

Instrument rotator angle:

- ► The mechanical limitation of the instrument rotator angle is ±276 deg.
- We assume to operate the instrument with the rotator angle between -60 deg. and +60 deg. to minimize the impact of fiber FRD
- The position angle (PA) of the FoV and the duration of the exposure in a fixed configuration therefore may be limited

- If the rotator angle hits the limit during the observation, we need to rewind the rotator so that the angle is within the available range
- Rewinding angle is 60 or 120 deg. taking into account the symmetry
- (c.f.) The maximum rotator speed is 1.5 deg. s⁻¹

PFS instrument details: spectrograph

• Exposure time:

Requirement of the exposure time: SpS shall be capable of taking exposure longer than 2 sec. and shorter than 30 min.

✓ The longest exposure time limit is due to various factors such as cosmic ray, OH line seturation of the seturation

- ✓ The shortest exposure time limit is required for taking calibration data (c.f., requirement of the shutter speed: ~1 sec. for open/close)
- Different exposure time for blue and red/NIR can be possible, but we can control the exposure of only blue arm (blue < red/NIR); no scientific merit?</p>

PFS instrument details: others

Operational mode:

- Currently, we suppose to operate without "beam-switching" mode
- Sky fibers and science fibers are observed simultaneously
- No limitation to the beam-switching from hardware perspective
- Any development of DRP for the beam-switching mode is not considered currently

• Taking calibration data:

- Calibration data for each fiber configuration is necessary
- ► It takes about ~5 mins. for one configuration (TBC)
- The data acquisition in the morning after the observation and the evening in the other day if necessary
- The number of fiber configuration per night may be limited

Summary of PFS SSP survey: basic concept

- Basic concept of the PFS survey operation is executing the following observation loops, in which each software component plays an important role
 - Exposure Targeting Software (ETS) calculates the fiber configuration for a given target list
 - Instrument Control Software (ICS) controls each instrument component
 - ► Data Reduction Pipeline (DRP) reduced obtained data for a scientific usage
 - Survey Planning & Tracking (SPT) manages the overall survey operation
 - All data are stored in PFS database system (operational + science)
- Development of each software component is in progress (see our GitHub; <u>https://github.com/Subaru-PFS</u>)

PFS survey procedure

Repeating the observing cycle connecting to each other

Summary of PFS SSP survey: planning & simulation

- We have many targets for 3 different science goals, with different required exposure time, in different fields on the sky, and so on
- We should include them into one survey package in 300 nights
- The overall survey strategy is not clearly defined yet actually
- Survey simulation is now ongoing to see what happens in the actual survey

Summary of PFS SSP survey: planning & simulation

finished fiber hours

٥f

number

- Simulation for Galaxy/AGN Evolution survey
- COSMOS mock catalog (total coverage is ~5 deg²)
- If the observed exposure time reaches the expected one, the observation of the target is stopped
- The number of assigned objects rapidly decreases in the end of the survey
- ~25% fibers may be open in the very end of the survey
- But we still have additional sources (e.g., fainter targets)

Summary of PFS SSP survey: example operation

- The design of the operational model in the actual survey is ongoing
- The assumed overheads:
 - Field acquisition: ~5 min. (large offset) / ~3 min. (small offset)
 - Fiber configuration: ~2 min. (full) / ~1 min. (tweak)
 - Starting auto guides: ~1 min.
 - Rewinding instrument rotator (if necessary): ~2 min.
- Typical overhead ratio (overheads / exposure time) is ~0.25

Summary:

- PFS is an instrument with a wide field (~1.3 deg.), a large multiplicity (~2400 fibers), and a wide wavelength coverage (3800Å-1.26µm)
- PFS SSP survey is 300 nights survey for 3 major science topics (Cosmology, Galactic Archaeology, Galaxy/AGN Evolution)
- The detailed design of the instrument operation and the SSP survey operation is actually under development
- We are happy to hear feedbacks from potential users in open use