PFS science operation concept of open-use programs

Masato Onodera (Subaru Telescope, NAOJ)

0. Outline

- 1. Goal of PFS science operation
- 2. Time line (example)
- 3. Proposal submission
- 4. Proposal selection and time allocation
- 5. Ideas for the use of unused fibres
- 6. Night observation and calibration data
- 7. Post observation flow: QA and data delivery
- 8. Discussion items

1. Goal of PFS science operation

- Efficient use of observing nights
- Maximise scientific output
- Provide opportunity for important science with an underused multiplex

2. Time line (in the case of S21B)

	What	
Feb 2021	Call for proposals	
Mar 2021	Submission deadline	
April-June 2021	TAC/Scheduling	
Aug 2021 Jan 2022	Semester S21B	

A night + < 2 business days + ~2 business weeks

Observation, initial QA (IQA) Final QA (FQA) Data reduction, delivery

3. Proposal submission

Subaru Telescope	PI	
Call for Proposals	Default mode is the queue mode	
Proposal application form and submission system	Request observing time in hour basis with a target list	
Exposure time calculator	Set seeing and transparency constraints	
Fibre allocation software	COnstraints	
Duplication checker	Check any duplications and simulation of fibre allocation	
	A separate category for bad weather projects	

4. Proposal selection and time allocation

TAC	Subaru Telescope	PI
Rank proposal to determine primary pointings cf. Grade A/B/C/F in HSC queue mode with Grade A being carried over 2 more semesters	Scheduling based on the primary pointings Ask PIs Phase 2 submission Provide Phase 2 form and submission system	Phase 2 submission by making Observing Blocks (OBs)

5. Ideas for the use of unused fibres (filler targets)

 There may not be enough objects to fill PFS FoVs with highly ranked targets

 Make a second call at the primary pointings.
Pointing centres and requested observing conditions will be public.

2. **Call letters of intent for long-term filler projects** separately. Here, fillers must distribute relatively uniformly (e.g., magnitude-limited sample) and have a potential to become legacy data.

6. Night observation concept

• Subaru Telescope carry out PFS runs in queue-mode from the beginning as default

[Minimum] No mixture of open-use programs per pointing but fillers

[Ideal] Fibres are shared by multiple programs (incl. SSP)

- **Pls submit target lists** with *priority, exposure time, seeing, and transparency* for the pre-defined pointing centres
- **Subaru Telescope** will carry out day time queue planning

6. (cont.) Night observation flow

- 1. Run the queue scheduler to **select best possible pointing** with given observing condition
- 2. Run exposure targeting software (ETS) to **configure fibres** using a combined target list

3.Science exposure

- 4. Repeat exposure $(\rightarrow 3)$ / Rewind $(\rightarrow 2)$ / Move to a different target field $(\rightarrow 1)$
- 5. Run the **on-site analysis** system to derive diagnostics parameters (e.g., seeing and transparency)
- 6. Initial **quality assessment** (IQA; seeing, transparency, and fibre positioning)

6. (cont.) Calibration data acquisition

- Most of calibration data will be taken in the morning (and maybe the evening in the following nights) because exact fibre configurations have to be known
- Telescope needs to be released for day crews by 7am
- Current estimate is **5 min per configuration**
- Night observing time may be reduced if too many configurations are requested

7. Post observation flow: QA and data delivery

1. Final QA (FQA; validation of IQA) for raw data within a couple of business days

- 2. Centralised data reduction by the observatory
- 3. **QA for the reduced data** (calibrated 1D spectra)
- 4. Delivery of the reduced 1D spectra with QA parameters

8. Discussion items (observing mode)

- Are there requests on offered observing modes?
- Example:
 - Different exposure times for different arms (blue, red, and IR)
 - Dual-beam switching mode
 - Classical mode observation

8. (cont.) Discussion items (policies)

- Filler call and its selection policy
- QA policy for reduced data
- Archive policy for reduced data
- Raw data delivery policy
- Fibre allocation policy for unused SSP fibres (if any)
- Fibre assignment and data delivery policy for the case of duplicated targets