

Subaru SCEXAO/CHARIS/IRD: Synergy on exoplanet sciences

December 18 14:45 - 15:10

Motohide Tamura The University of Tokyo & Astrobiology Center of NINS NAOJ Exoplanet Project Office of NINS

Talk Outline Subaru/SEEDS project with HiCIAO as an example of large international project on exoplanet/disk • Current Subaru Exoplanet Instruments SCExAO CHARIS IRD WFIRST/Subaru Synergy community proposal examples) Future plans and Summary

Challenges with Direct Imaging

- Huge contrast ratio between planet and star
 - ~10^9 for Earth-Sun
 - ~10^8 for Jupiter-Sun
 - ~10^6 for young Jupiter-Sun

Self-luminous giant planets are main targets for direct imaging (at present)

Techniques for Direct Imaging

- Adaptive optics on 8-m class telescopes is a must
 - ~200 actuators to
 - ~2000 actuators (Extreme AO)
- Speckle noise from bright central star
 - Not photon-noise but speckle-noise limited observations

How to remove static speckles?

- Coronagraph
 - Ex. Subaru/ CIAO (previous) & HiCIAO & CHARIS
- Various differential imaging techniques
 - PDI: polarization
 - SDI: spectrum
 - ADI: angle

SEEDS –Strategic Explorations of Exoplanets and Disks with Subaru

- The first "Subaru Strategic Program (SSP)" An open-use category
- 120 nights from 2009; finished in 2015 Jan, only <1 night loss due to HiCIAO
- NIR direct imaging and census of giant planets in the outer regions (10-100AU) around ~500 solar-type and massive stars
- Exploring protoplanetary disks and debris disks for the origin of their diversity and evolution at the same radial (10-100AU) regions
 - **Direct linking** between planets and protoplanetary disks

>100AU scale w/ CIAO

Solar-System Scale (<100AU) w/ HiCIAO

Resolution =0.05-0.1" Contrast Improved by ~10

SEEDS Result Summary 2017.12.10

RESULTS	NUMBERS	
Refereed English Journal	56	
of which Japanese-led	36	
of which in ApJ	34	
Most cited - Top 5 (Muto+2012/Kuzuhara+2013/Hashimoto+2011/ Grady+2013/Carson+2013)	173/148/120 /111/101	
Master+Doctor thesis	15+10	

Subaru/ABC Directly Imaged Planets Gallery

HR 8799 bcde (A star)

Discovered by Marois+08, 10

2002 by CIAO!

Fukagawa+09

1" = 52 AU

Kappa And b (B star)

Wide-orbit planets can be detected currently only by direct imaging; Many are a>=100 AU; only handful for <u>Solar-system-scale orbit planets</u>.

Directly Imaged Planets are still few (Mass =<13 M_{IIIP})

Subaru+ has a suite of best exoplanet instruments !

• SCExAO: 2014-, Science phase

- 2000 MEMS deformable mirror
- IR bench for HiCIAO & CHARIS
- OPT bench for FIRST & VAMPIRE

CHARIS: 2016-, FL done

- IFU Combined with SCExAO
- R19/R70 JHK spectroscopy
- IRD: 2017-, FL done (IR Doppler)
 - IR echelle,R~70,000, fiber-fed
 - 1m/s accuracy w/ laser-comb
 - Habitable earths and super-earths around late M stars
- MuSCAT2 (+MuSCAT/OAO): 2017-, FL done
 - Optical multi-band transit on IAC1.5m
 - MuSCAT/OAO1.88m, science continued

• PRIME: SAAO-site, project started

- 1.8m IR microlensing + others at SAAO

Subaru Coronagraphic Extreme Adaptive Optics

High Strehl Ratios

S.R. ~ 0.9 for bright stars under average to good conditions x-AO correction demonstrated down to I ~ 9 LkCa 15: R ~ 11.6 star, K band

SR~0.65 @ H Predictive control ON

CHARIS Specs Summary

- Major Science Objective:
 - Spectral characterization
 - Exoplanets
 - Disks
 - Brown dwarfs
 - Supports Coronagraph IWA = 3 λ/D = 90 mas Current coronagraphs are pushing inside
 - ~ 2"x 2" FOV
 - R~19, J+H+K Band
 - □ ~53% Throughput
 - □ R~65-85: J,H, and K Bands
 - □ ~40% Throughput

SCExAO vs. other leading systems

contrast: ~1d-5 at 0.3 ~1d-6 at 0.75"

Comparable to GPI and LBTAO: Improving and closing the gap with SPHERE

Infrared Doppler instrument (IRD)

What is IRD?

- High-resolution, NIR spectrometer for the Subaru for planet detection by radial velocity method (R=70,000 max, Y,J,H)
- First light on Telescope: 2017/Aug/9th
- Start of a strategic survey: from 2019/Feb, 100 nights for 5 years (planned)

Goal of IRD

- Detection of ~ 50 planets around nearby M dwarfs, including ~10 Earth-like planets in their habitable zone
- Characterization of planet atmospheres

Uniqueness of IRD

- Large collecting area of Subaru telescope
- Wide spectral coverage (0.97-1.75um)
- Original laser frequency comb
- Combination with Adaptive optics, Single or Multi-mode fiber injection

Overview of IRD

IRD First Light at Subaru!

HR7596 YJH-band, 2017/08/10 1:37 HST

Laboratory spectrum (white light & laser comb)

Original Laser frequency comb

- Our original laser frequency comb will cover Y, J, H-band simultaneously
- Sufficiently wide frequency span(12.5GHz, 0.09nm @ 1.5um)
- Developed by the group at Tokyo University of Agriculture and Technology

Goal

- Wavelength coverage : $980 \sim 1750 \ nm$
- Mode spacing : 12.5 GHz
- \bullet Frequency stability : <0.5~MHz
- Contrast : > 15 dB

Measured 1040 ~ 1750 nm 12.5 GHz <0.3MHz > 30 dB

High-contrast and High Dispersion Spectrograph

J-Community Survey Jrom J WP

Science Program	Authors	HSC	\mathbf{PFS}	IRD	SCE	ULT
Exoplanets						
~Probing Dust Grains in Circumstellar Disks	~Muto	_	_		0	_
Polarimetry of Planets/Protoplanetary Disks	Murakami +	_	_	_	0	_
Exoplanets Search by Astrometry	Yamaguchi+	—	—	—	0	
Extinction in WFIRST Microlensing Fields	Suzuki+	0	_	_	_	_
P Concurrent Microlensing Observations	T.Sutzukin-	00	—	_	_	—
Imaging of Microlensing Planetary Hosts	Fukui+	_	_	_	0	0
Characterization of Transiting Exoplanets	Narita	_	_	0	_	—
Exoplanets around Late-M Dwarfs	Kuzuhara+	—		0	_	

Note. — SCE and ULT indicate the SCExAO and the ULTIMATE-Subaru, respectively.

Stallar Astrophysica

p g v p

Multi-color observations of protoplanetary disks

- Difficulty of dust formation from mm to km.
 - considering porosity of dust
- Characteristics:
 - Aggregate (high porosity):
 - interference among small monomers
 - constant polarization degree independent of aggregate size
 - Monomer (low porosity)
- decrease in polarization degree due to
 - multiple scattering in large monome Symmetric surface brightness
- Multiple observations with WFIRST (visible) and SCExAO (near-infrared) constrain the dust structure.

θ

S

¥ 10⁰

porosity

20

Linear polarization P (θ =40) (%)

amax=0.2µm

22 24 26

28 30

R₀=0.2µm

Monomer (rayleigh

scattering)

Search for long-period planets orbiting nearby stars with IRD Kuzuhara-san et al.

• Providing important targets (reflected gas giants) to the WFIRST coronagraph.

- Wide separation planets

(promising in terms of contrast)

- Nearby stars

(promising in terms of sensitivity and wavefront sensing).

 The number of M dwarfs within 10pc is a few hundreds. The outer region (>1AU) around M dwarfs is unexplored.
-> Extension of SSP of IRD can search for long-period gas giants.

Unexplored region

Follow-up of astrometry planet with WFIRST

- Near-field wide-field imager possibly performs high-precision astrometry of nearby M-dwarfs.
- Astrometry has sensitive to young planetary systems.
- Young self-luminous gas giants with long period are suitable for SCExAO.
- We need to discuss how much the astrometric accuracy can be achieved under the degradation of the specification on pointing jitter.

New discovery region with WFIRST wide field instrument?

Detection limits of astrometry with 10 μas around G, K, M dwarfs

Yamaguchi, Matsuo

Another possibility

- The WFIRST coronagraph is also positioned as demonstrations of the future space concepts (LUVOIR/HabEx).
- As a complementary testbed, the Subaru high-contrast instrument can perform key technologies, which are not tested with WFIRST.

