

[Equatorial Coordinates]

Uniqueness of Subaru

- Collecting power, Wide FoV & Image quality (obs. conditions): a nice match to WFIRST-NIR space-data
- Imaging ⇔ LSST (southern hemisphere)
 - Note: Subaru/LSST much deeper than Euclid; narrow-band filters
- Prime Focus Spectrograph: multi-object spectrograph
 - Wide field view: ~1.25 sq. deg. (WFIRST: 0.28 sq. deg.)
 - High multiplex (~2000 fibers per sq. degrees)
 - 380-1260nm: a nice synergy with WFIRST (1000-1890nm)?
 - R~3000 at red, 4000 at NIR (R~461)
 - High throughput (compared to 4m-class instrument)
- What else?

Potential PFS+WFIST+LSST synergies

Overlapping area btw PFS & WFIRST	Observables	Science	Remarks
~10 sq. degs.	 Photo-z calibration for WFIRST 	Galaxy evolution	Requires deep PFS observation.Different survey fieldsNarrow-band filters?
~100 sq. degs.	 RSD Stacked velocity structure around clusters WFIRST-WL of PFS galaxies/clusters Cross-correlations 	 Cosmological parameters Test of gravity CGM/IGM +Galaxy science (if HSC NBs are added)? 	 High redshift Advantage of PFS high-density More in the linear regime +Narrow-band filters (Subaru time)?
> A few 100 sq. deg.	 RSD & BAO Clustering + WFIRST-WL of PFS galaxies + CMB lensing Stacked velocity profiles Cross-correlations 	 Cosmological paras (DE, neutrino mass, curvature) Test of gravity Non-gaussianity CGM/IGM 	 Needs to study an optimal survey design Survey fields are low in their elevation for Subaru? Expensive? PFS+WFIRST+LSST