Subaru users' meeting, 2018 Jan.

A Systematic Search of Protoclusters at z~4 Based on the >100deg² Area

(published in the PASJ special issue for HSC survey)

Jun Toshikawa (ICRR, Univ. of Tokyo)

Hisakazu Uchiyama, Nobunari Kashikawa, Masami Ouchi, Yoshiaki Ono, Yuichi Harikane, and the HSC project 96

Importance of protoclusters

When and how are galaxy clusters formed?

Protoclusters in the early universe would reveal the primordial condition of clusters at their birth.

Springel et al. (2005)

Importance of protoclusters

When and how are galaxy clusters formed?

Protoclusters in the early universe would reveal the primordial condition of clusters at their birth.

The number of known protoclusters is still small, especially at high redshift (N~10-20 at z>3).

Springel et al. (2005)

Where are protoclusters?

Most of previous works are searching for protoclusters around QSOs and radio galaxies. **Are these galaxies really good probes of protoclusters?**

Uniqueness of our research

Searching only around RGs or QSOs may make a biased sample of protoclusters. We will perform an unbiased search of protoclusters by using wide-field imaging of HSC survey.

Based on a systematic sample of protoclusters, we can investigate galaxy evolution in high-dense environments and the formation of clusters/large-scale structure.

Previous work in CFHTLS Deep

Data, Overdensity estimate

- based on the S16A data release
- select LBGs at z~4 in HSC-WIDE (S_{eff}=121deg²)
- estimate local surface number density (by the same method as in Toshikawa et al. 2016)
 use LBGs down to *i*=25.0mag,
 count LBGs within an aperture of r=1.8arcmin (0.75pMpc),
 overdensity is defined as (N-N_{ave})/σ

Consistency check

Two datasets are available in the COSMOS (HSC-UD & CFHTLS D2). We apply the same analysis (LBG selection & overdensity estimate).

overdensity contour maps

blue color scale: HSC dataset red lines: CFHTLS dataset

Clustering of protoclusters

We have estimated angular correlation function at $z\sim4$ for the first time.

Clustering of protoclusters

We have estimated angular correlation function at $z\sim4$ for the first time.

Clustering of protoclusters

We have estimated angular correlation function at $z\sim4$ for the first time.

Relation between protoclusters and QSOs led by Hisakazu Uchiyama

Based on the HSC protocluster candidates at z~4

There is no significant difference between QSOs and g-dropout galaxies. \rightarrow QSOs do not tend to reside in high dense environments.

Ongoing/future work

- sub-mm follow-up imaging (HSC project 196, PI: Y. Matsuda)

JCMT/SCUBA2 (850 μ m) imaging was conducted.

We will investigate the distribution/properties of SMGs in protoclusters.

 $\Delta R.A.$ (physical Mpc)

 $2 \quad 1 \quad 0 \quad -1 - 2 \quad 2 \quad 1 \quad 0 \quad -1 - 2 \quad 2 \quad 1 \quad 0 \quad -1 - 2$

Summary

- 179 protocluster candidates at $z\sim4$ are identified in the HSC-WIDE.
- Clustering analysis was applied for the first time.
- The spatial distribution (r_0 -n) is consistent with the prediction of ΛCDM .
- The dark matter halo mass is found to be $2 \times 10^{13} M_{sun}$.
- QSOs do not tend to reside in overdense regions.
- Follow-up observations are ongoing. (spectroscopy, multi-wavelength imaging).

We will extend this protocluster search to z~3-6 in order to understand cluster formation history.