HSC Project 13

Statistical study of the galaxy-MgII absorber relation with the Subaru HSC-Wide survey

Tomohiro Nozawa(1)

Collaborators: Ting-Wen Lan(1), Masahiro Takada(1) Surhud More(1), Anupreeta More(1), Masatoshi Imanishi(2) (1)Kavli IPMU, (2)NAOJ

> KAVLI IPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

CGM: Complex structure

Jason Tumlinson et al. 2017

Goal: Reveal CGM structure observationally.

MgII absorber systems

Normalized SDSS QSO spectra

Guangtun Zhu, Brice Menard et al. 2013

- Doublet & Strong absorption feature
- Rest-frame wavelength $= 2796, 2803 \text{ \AA}$
 - redshifted into optical wavelength if:
 $0.35 \lesssim z_{\rm abs} \lesssim 2.3$
- Trace low temperature ($\sim 10^4 \, {\rm K}$)
 & high density gas

Previous study

Lan et al. 2014 w/ SDSS galaxies & SDSS QSOs

z ~ 0.5, bright galaxies (18<r<22)

- \cdot MgII absorbers are associated w/ both blue and red galaxies.
- Distribution of MgII becomes clumpy toward outer region of galactic haloes.

Questions

- Are MgII absorbers associated w/ blue/red galaxies at z > 0.5?
- Which are MgII absorbers strongly correlated w/ bright or faint galaxies?
- Does MgII distribution evolve w/ redshift?

Data

Mgll absorber SDSS QSO spectra

Guangtun Zhu, Brice Menard et al. 2013

• ~43,000 Mgll abs (DR7&9)

• $W_0 > 0.4 \text{\AA}$

• $0.4 < z_{abs} < 2.0$ (93%)

Galaxy HSC-Wide survey

(http://hsc.mtk.nao.ac.jp/ssp/science/weak-lensing-cosmology/)

• ~200 deg^2 , ~19M galaxies • $m_z \le 24$ mag, $\sigma_{m_z} \le 0.1$ • $z_{photo} < 1.6$ (91%)

SDSS Mgll absorber systems HSC-Wide galaxy catalog

~1,300 MgII abs

Cross correlation Result

Are MgIIs associated w/ both blue & red galaxies?

Which are MgIIs strongly correlated w/, bright or faint galaxies?

Which are MgIIs strongly correlated w/, bright or faint galaxies?

Which are MgIIs strongly correlated w/, bright or faint galaxies?

Does MgII distribution evolve w/ redshift?

Does MgII distribution evolve w/ redshift?

Summary

- Are MgII absorbers associated w/ both blue and red galaxies?
- Which are MgII absorbers strongly correlated w/, bright or faint galaxies?

Does MgII distribution evolve w/ redshift?

Summary

- Are MgII absorbers associated w/ both blue and red galaxies?
 Yes, at 0.5<z<1.1.
- Which are MgII absorbers strongly correlated w/, bright or faint galaxies?

More strongly correlated w/ bright ones at 0.6 < z < 1.0. At z > 1.0, the correlation w/ bright ones was at least detected.

• Does MgII distribution evolve w/ redshift? No, within error bars at 0.6< z < 1.2.

Discussion & Future work

Outflow origin?

Satellite galaxy origin?

Central galaxy

Satellite galaxies

-----> Future Work

 Azimuthal angle dependence of MgII distribution around star-forming galaxies.

Summary of this talk

- We calculated galaxy-Mgll cross-correlation w/ HSC-Wide galaxies and SDSS QSO absorbers.
- The non-zero signals are found at $z \sim 0.5$ -1.5.
- We found that:
 - Both blue/red galaxies have MgII within 200kpc.
 - Mglls are more strongly correlated w/ brighter galaxies.
 - Covering fraction doesn't evolve w/ redshift within errorbars at 0.6<z<1.2.
 - Our results can be explained by either the outflow or the satellite galaxy origin.