

Detection of TiO and a Stratosphere in the Day-side of WASP-33b

Stevanus K. Nugroho sknugroho@astr.tohoku.ac.jp

Collaborators:

Hajime Kawahara (University of Tokyo, RESCEU), Kento Masuda (Princeton University, Sagan Fellow), Teruyuki Hirano (Tokyo Institute of Technology), Takayuki Kotani (NAOJ, Astrobiology Center) and Akito Tajitsu (Subaru telescope)

First evidence of inversion layer (or not)

First evidence! Inversion layer in the day side of HD 209458b's atmosphere

But with new version of the data pipeline and latest methodology, Diamond-Lowe et al. 2014 reported no inversion in HD 209458b atmosphere

/F. (x10⁻³)

20

5 6 7 8 9 10

Wavelength [µm]

10¹

1000

2000

Temperature [K]

3000

More Evidences from Spitzer and HST Observation

No direct detection of TiO/VO, can TiO/VO really explain temperature inversion?

TiO cold trap is likely to exist between the hot convection zone and the hot upper atmosphere on the irradiated day sides of planets

Spiegel et al. 2009

Attempt to detect TiO using HDS

Attempt to detect TiO using HDS

WASP 33 b orbiting WASP 33 (Delta Scuti star)

Johnson et al. 2015

2015 October 26 and 27 HST

Using HDS in Subaru telescope (PI: H. Kawahara)

Image slicer #3 (slit width= 0."2 each) R~165.000

6170-7402 Å (Blue CCD) 7594-8817 Å (Red CCD)

52 spectra of WASP 33 @t_{exposure}= 600 s 6 spectra of HD 13041 @t_{exposure}= 200 s 2 spectra of Barnard star @t_{exposure}= 600 s 5 spectra of HD 95735 @t_{exposure}= 300 s

The orbital phase of WASP-33b that covered by our observation.

Data Reduction

Standard reduction using IRAF and custom build CL script to extract 1D spectrum

Blaze function variation

Similar pattern

Wavelength shift during observation

Checking RV of WASP-33 and the Accuracy of TiO Line List

Removal of Telluric and Stellar lines by SYSREM (Tamuz et al. 2004)

For N light-curves (stars), each consists of M measurements

Find "optimum $\mathbf{c_i}$ { c_i ; i = 1, N} and $\mathbf{a_j}$ { a_i ; j = 1, M} that minimize:

$$R^2 = \sum_{ij} \frac{(r_{ij} - c_i a_j)^2}{\sigma_{ij}^2}$$

 \mathbf{r}_{ij} = average-subtracted stellar magnitude \mathbf{c}_{i} = best linear fit slope (extinction coefficient) for i light-curve \mathbf{a}_{i} = airmass at j

The prior is the known airmass

1st step

Prior= known airmass

$$R_i^2 = \sum_j \frac{(r_{ij} - c_i a_j)^2}{\sigma_{ij}^2}$$
 $c_i = \frac{\sum_j (r_{ij} a_j / \sigma_{ij}^2)}{\sum_j (a_j^2 / \sigma_{ij}^2)}$.

2nd step

Doing that iteratively will give us optimized $(\bar{c}_i)^{(1)}\bar{c}_i$

After removing this effect then the new residuals is define as: $^{(1)}r_{ij}=r_{ij}-^{(1)}\bar{c}_i{}^{(1)}\bar{a}_j$

 $^{(1)}S^{2} = \sum_{ij} \frac{\left(^{(1)}r_{ij} - ^{(2)}c_{i}^{(2)}a_{j}\right)^{2}}{\sigma_{ij}^{2}}$

Applying SYSREM to Our Data

- 1D normalized data
- Raw data
- After the a function variation correction and the common wavelength grid iteration
- The mean subtracted spectra as the input to SYSREM.
- The residual spectra after running 1 SYSREM iteration
- The residual spectra after running 4 SYSREM iteration

WASP-33b Model Spectrum

Using TiO line list from Plez 1998
Calculate the cross section using Py4CATS-> combined into absorption coefficient->integrated along the line of sight through the atmosphere

Full inversion model (FI-spec)
Non inversion model (NI-spec)

Haynes et al. 2015 model (H-spec)

Cross Correlation of Residual with Spectral Template

Cross-correlated with the Doppler shifted model spectrum covering

-169.69 km/s < RV $_{p}$ < +393.30 km/s with 0.5 km/s step

The CCF of the frames (40 frames in total, **excluding** the frames when WASP-33b in **the secondary eclipse phase**) are integrated along the expected RV_p curve

$$RV_{p}(t) = K_{p} \sin(2\pi\phi(t)) + V_{sys} + v_{bary}(t)$$

Orbital phase
$$\phi(t) = \frac{t - T_0}{P}$$
,

for

The planet semi amplitude

+150 km/s < Kp < +310 km/s

The systemic velocity

-80 km/s < Vsys < +80 km/s

TiO Signal Detection

With H spec

Order-based SYSREM Optimization

Inject the scaled artificial signal with different sc (scaling constant)

Planet to star flux contrast sc= [20%, 40%, 60%, 80 %, 100 %]

Order 2 of Red CCD Forest of O₂ Telluric lines

Final Result

No signal at the s. Eclipse phase

Final Result

No signal at the s. Eclipse phase

Statistical Tests

The in-trail signal was compared with the out-of-trail signal

Welch's t test showed that the intrail signal distribution deviates from the out-of-trail signal distribution by 5-sigma

Future works

Future works

Summary

- Confirmed the inaccuracy of TiO line list for < 6300 Å and found that for > 6300 Å the TiO line list is accurate.
- Confirmed the RV of WASP-33 to be ~3 km/s in agreement with Collier Cameron et al. 2010 measurement.
- Provided the first orbital velocity measurement Kp= 239.0 (+2.0 -1.0) km/s
- Provided the first dynamical measurement of the mass of WASP-33 to be 1.73 (+0.04 -0.02)
 M_{sun}, heavier than the latest estimation

• Detected TiO emission signature and a stratosphere in the day side of WASP-33b with 4.8 sigma confidence level

Thank you

An ultrahot gas-giant exoplanet with a stratosphere (Evans et al. 2017)

Detection of titanium oxide in the atmosphere of hot Jupiter

(Sedaghati et al. 2017)

WASP-19b revolves around G8V star (m_v = 12.3) on a 0.789-day orbit

High-Dispersion Spectroscopy

Separate planet spectrum from telluric spectrum

Doppler shifted Earth-like exoplanet

Earth's telluric spectra

$$S/N = \frac{S_{\text{planet}}}{\sqrt{S_{\text{star}} + \sigma_{\text{bg}}^2 + \sigma_{\text{RN}}^2 + \sigma_{\text{Dark}}^2}} \sqrt{N_{\text{lines}}}$$
 (1)

lines	velocity	origin
Planetary lines	$V_p + V_{ m sys}$	$A(\lambda)$ in $f_{\rm p}(\lambda)$
Scattered stellar lines	$V_p + V_{ m sys}$	$F_{\star}(\lambda)$ in $f_{\rm p}(\lambda)$
Speckle stellar lines	$V_{ m sys}$	$f_{ m speckle}(\lambda)$
Telluric lines	0	$T(\lambda)$
Airglow	0	$f_{ m sky}(\lambda)$

Kawahara et al. 2014

Evaluating on how many iteration for one systematics model should we do

Until the standard deviation of a_i and c_i does not change

High Dispersion Spectroscopy

Well, some are hot enough but no temperature inversion

Possible Explanation: UV Chromospheric Stellar Activity?

Planets **with** strong inversions

- < fluxes at 3.6 µm
- > fluxes at 4.5 µm

Planets without inversions

- > fluxes at 3.6 µm
- < fluxes at 4.5 µm

compared to best-fit blackbody function

Knutson et al. (2010)