Optical high-resolution spectroscopy of young α-rich stars

Tadafumi Matsuno / 松野 允郁 (Sokendai / NAOJ)

In collaboration with David Yong (ANU), Wako Aoki (NAOJ), Miho N. Isihigaki (IPMU/U-Tokyo)

Galactic Archaeology

Study of the history of chemical enrichment in Milky Way from chemical abundances of stars Stellar age estimates have been limited

Age Estimates from Asteroseismology

Kepler / CoRoT enabled age estimates for red giants

Huber+10

 $M \propto \nu_{\rm max}^3 \Delta \nu^{-4} T^{1.5}$ age ~ $t_{\rm MS}(M)$ <- stellar evolution theory

Discovery of Young α-rich Stars

Asteroseismology revealed the \mathbb{E} existence of young α -rich stars

not expected in simple galactic chemical evolution models

[α/Fe] decreases with time α: Ο, Mg, Si, S, Ca, Ti **Observations**

Possible Origins

Chiappini+15, Martig+15, Izzard+17 **Binary interaction (Evolved blue straggler scenario)** Mergers / mass transfer -> mass increase -> look younger white dwarf RGB, AGB **Peculiar formation site** Recent accretion of pristine gas to the Galaxy high- $[\alpha/Fe]$ gas star formation Image Credit: 2MASS/J. Carpenter, T. H. Jarrett, & R. Hurt

Possible Origins

- Chiappini+15, Martig+15, Izzard+17 Binary interaction (Evolved blue straggler scenario)
- Mergers / mass transfer -> mass increase -> look younger Chemical signature of these events?
- Increased angular momentum?
- High binary frequency?
- **Peculiar formation site**
- Recent accretion of pristine gas to the Galaxy
- Characteristic chemical composition?
- Optical high-resolution spectroscopy with a 8-10m telescope

Data Acquisition

Instrument

HIgh Resolution Echelle Spectrometer on Keck I through **Subaru-Keck time exchange program** when Subaru was in downtime

Setting

 $\begin{array}{l} {\sf R} \sim 67000 \; (\sim 4.5 \; {\sf km/s}) \\ {\sf 4200} \; < \lambda \; ({\sf A}) \; < \; 8750 \end{array}$

Targets

14 young α-rich stars+ 16 nearby giants (comparison)

Confirmation of α-richness

α-enhancement is clearly confirmed

High-r / low-s Process Abundances

comparison stars
 young α-rich stars
 s-process (AGB)
 (slow-enrichment)
 young α-rich: low

r-process
(fast enrichment)
young α-rich: high
Chemically-old again

Line Widths / Radial Velocity

- No signature of rapid rotation
- Slightly higher binary frequency -> binary interaction

Comparison young α -rich stars

No Clear Signature of Mass-Transfer

Surface anomalies due to binary mass transfer? high *s*-process elements: signature of mass accretion from AGB stars

young α -rich stars have normal *s*-process abundances

Remaining Possibilities

Mass accretion from companion (excluding AGB stars)

slightly higher binary frequency
 no chemical signature
 Needs further RV monitoring

Stellar mergers

no chemical signature
 not rapidly rotating

 (note slow down timescale is very short)

Summary

- Young α -rich stars are α -rich like old stars but estimated to be young
- By obtaining optical spectra, we
- confirm high- α abundances
- reveal similar *n*-capture elements abundances to old stars
- find no signature of rapid dotation
- find slightly higher binary frequency
- **Conclusion**:
- young α -rich stars are likely to be formed by binary interaction without any signature in a single spectrum
- Time exchange program is very effective to keep competitiveness even when Subaru is in downtime