Subaru user meeting FY2017, Jan. 17-19, 2018 Mitaka JP

Clustering of quasars in a wide luminosity range at z~4 with HSC wide field imaging https://arxiv.org/abs/1704.08461

Introduction

- supermassive black holes are ubiquitous in massive galaxies
- BH mass is correlated with properties of host galaxy

quasar is triggered by accretion towards BH

One good tool: clustering analysis of quasars and galaxies

No matter being luminous or faint, quasars prefer residing in massive halos (10^12-10^13) at z<3 (Shen+09; Ikeda+15...).

 (\bullet)

Models can explain weak luminosity dependence at z<3.

At z~4, SMBH growth models suggest weaker clustering, i.e. smaller host halo, for less-luminous quasars.

At z~4, SMBH growth models suggest weaker clustering, i.e. smaller host halo, for less-luminous quasars.

Data sample

Subaru Hyper Suprime-Cam (HSC) SSP

1. 116 2K x 4K CCDs (104 CCDs for science)

2. 1.5 deg FoV

- 3. Wide: i < 25.9 over 1400 deg2
 - Deep: i < 26.8 over 27 deg2 UDeep: i < 27.4 over 3.5 deg2

--> a large sample of quasars with low luminosity at high redshifts (z>3) can be constructed for further statistics analysis

Figure 11: The location of the HSC-Wide, Deep (D) and Ultradeep (UD) fields on the sky in equatorial coordinates. A variety of external data sets and the Galactic dust extinction are also shown. The shaded region is the region accessible from the CMB polarization experiment, ACTPol, in Chile.

Data sample

Data: HSC-SSP S16A Effective area: 172 deg^2 Method: g-drop color selection

Data sample

Two sub-regions

 (\bullet)

Clustering analysis

 (\bullet)

$(\mathbf{+}$

Discussion

 We obtain the bias factor of both of high- and low-luminosity quasars at z~4 from their CCF with LBGs.

 Host halo of high-L quasars is quickly growing from z~4 to z~2, resulting in a similar host halo mass to that of low-L quasars at z~2.

Discussion 1: one scenario

Conficting with major merger/efficient feedback model?

 (\bullet)

Discussion 1: one scenario

- Spectroscopic follow-up:
- 5 nights with AAT/AAOmega+2dF (70% time is clear)
- Grating: 580V+385R
- 84 z~4 HSC quasar candidates at 20<i<23 are allocated with fibres

~4h exposure time for each target field

g-r

 $(\mathbf{+}$

Discussion 1: one scenario

Discussion 1: one scenario

•

•

Discussion 2: another scenario

 (\bullet)

Discussion 2: another scenario

 The discrepancy between the ACf and CCF of luminous quasars makes conclusion complicated.

Discussion 2: another scenario

 The discrepancy between the ACf and CCF of luminous quasars makes conclusion complicated.

Summary

- We find no significant luminosity dependence of quasar clustering at z~4, that both of high- and low-luminosity quasars reside in halos with ~10^12 solar mass;
- We find a discrepancy between the ACF and CCF of luminous quasars, which may be an indication of feedback from luminous quasars.
- 60/84 HSC z~4 quasar candidates at 20<i<23 are identified;
- Low-L quasars are less massive than high-L ones, and they have a similar Eddington ratio distribution.
- --> the scaling relation between SMBHs and their host galaxies may be broken at early epoch.
- Final HSC-SSP data release / future follow-up with PFS...

Thank you for your attention!