

SSP data release, HSC Log, and Open-use Data Analysis

Hisanori Furusawa, Hiroyuki Ikeda, Michitaro Koike, Sogo Mineo, Yukie Oishi, Yuki Okura, Tadafumi Takata, **Masayuki Tanaka**, and Yoshihiko Yamada

The First Public Data Release of HSC-SSP

Hyper Suprime-Cam Subaru Strategic Program

Home Survey Processing Release Data Database Data Access FAQ

Data Release 1

We peer deep into the Universe to unveil the nature of dark matter and dark energy.

News: the second incremental data release!

We are pleased to announce the 2nd incremental data release from HSC-SSP. This release includes (1) emission-line object catalog from Hayashi et al. (2017), (2) weak-lensing simulation data from Mandelbaum et al. (2017), and (3) deep, multi-band photometric catalog from Mehta et al. (2017). In addition, two new data retrieval tools are available: PSF picker and postage-stamp retriever. The former is an online tool, where a user can upload a coordinate list and retrieve PSF models at the input positions. This will be useful for detailed analysis of object shapes. The latter is a client tool, with which a user can download postage stamps of multiple objects in color. For details, follow the links from the Data Access page.

Public Data Release 1

Welcome to the Hyper Suprime-Cam Subaru Strategic Program Data Release Site!

The first public release of HSC-SSP occurred on 28 February 2017. The release includes over 100 square degrees of deep multi-color data served through dedicated databases and user interfaces. The figures below shows the area covered in this release and the table gives an overview of the data in the three survey layers. Refer to **our survey website** for details of the survey design.

The First Public

Hyper Suprime-Cam S

Data Release

We peer de

News:

We are please Hayashi et al. from Mehta e online tool, wh object shapes. links from the

Public

Welcome to the The first public served through overview of the through the thr

16%

+5°

First Data Release of the Hyper Suprime-Cam Subaru Strategic Program

Hiroaki Aihara¹, Robert Armstrong², Steven Bickerton³, James Bosch², Jean Coupon⁴, Hisanori Furusawa⁵, Yusuke Hayashi⁵, Hiroyuki Ikeda⁵, Yukiko Kamata⁵, Hiroshi Karoji^{6,2}, Satoshi Kawanomoto⁵, Michitaro Koike⁵, Yutaka Komiyama^{5,7}, Dustin Lang^{8,9}, Robert H. Lupton², Sogo Mineo⁵, Hironao Miyatake^{10,11}, Satoshi Miyazaki^{5,7}, Tomoki Morokuma^{12,11}. Yoshiyuki Obuchi⁵, Yukie Oishi⁵, Yuki Okura^{13,14}, Paul A. Price², Tadafumi Takata^{5,7}, Manobu M. Tanaka¹⁵, Masayuki Tanaka^{5,*}, Yoko Tanaka¹⁶, Tomohisa Uchida¹⁵, Fumihiro Uraquchi⁵, Yousuke Utsumi¹⁷, Shianq-Yu Wang¹⁸, Yoshihiko Yamada⁵, Hitomi Yamanoi⁵, Naoki Yasuda¹¹, Nobuo Arimoto^{16,7}, Masashi Chiba¹⁹, François Finet¹⁶, Hiroki Fujimori²⁰, Seiji Fujimoto²¹, Junko Furusawa⁵, Tomotsugu Goto²², Andy Goulding², James E. Gunn², Yuichi Harikane^{21,23}, Takashi Hattori¹⁶, Masao Hayashi⁵, Krzysztof G. Hełminiak²⁴, Ryo Higuchi²¹, Chiaki Hikage¹¹, Paul T.P. Ho^{18,25}, Bau-Ching Hsieh¹⁸, Kuiyun Huang²⁶, Song Huang^{27,11}, Masatoshi Imanishi^{5,7}, Ikuru Iwata^{16,7}, Anton T. Jaelani¹⁹, Hung-Yu Jian¹⁸, Nobunari Kashikawa^{5,7}, Nobuhiko Katayama¹¹, Takashi Kojima^{21,23}, Akira Konno²¹, Shintaro Koshida¹⁶, Alexie Leauthaud²⁷, C.-H. Lee¹⁶, Lihwai Lin¹⁸, Yen-Ting Lin¹⁸, Rachel Mandelbaum²⁸, Yoshiki Matsuoka^{5,29}, Elinor Medezinski², Shoken Miyama^{17,30}, Rieko Momose²², Anupreeta More¹¹, Surhud More¹¹, Shiro Mukae²¹, Ryoma Murata^{11,1}, Hitoshi Murayama^{11,31,32}, Tohru Nagao²⁹, Fumiaki Nakata¹⁶, Mana Niida³³, Hiroko Niikura^{1,11}, Atsushi J. Nishizawa³⁴, Masamune Oguri^{35,11,1}, Nobuhiro Okabe^{36,17}, Yoshiaki Ono²¹, Masato Onodera¹⁶, Masafusa Onoue^{5,7}, Masami Ouchi^{21,11}, Tae-Soo Pyo¹⁶, Takatoshi Shibuya²¹, Kazuhiro Shimasaku²³, Melanie Simet³⁷, Joshua Speagle^{38,11}, David N. Spergel^{2,39}, Michael A. Strauss², Yuma Sugahara^{21,23}, Naoshi Sugiyama^{40,11}, Yasushi Suto^{1,35}, Nao Suzuki¹¹, Philip J. Tait¹⁶, Masahiro Takada¹¹, Tsuyoshi Terai¹⁶, Yoshiki Toba¹⁸, Edwin L. Turner^{2,11,1}, Hisakazu Uchiyama⁷, Kejichi Umetsu¹⁸, Yuji Urata⁴¹, Tomonori Usuda^{5,7}, Sherry Yeh¹⁶, Suraphong Yuma⁴²,

¹Department of Physics, University of Tokyo, Tokyo 113-0033, Japan

© 2014. Astronomical Society of Japan

GAMA15H

Data Release paper with 110 authors!

COSMOS

Search ...

ease Data Database Data Access FAQ

ilog from ic catalog ormer is an ed analysis of , follow the

lor data

²Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544

³ Orbital Insight, 100 W. Evelyn Ave. Mountain View, CA 94041

Department of Astronomy, University of Geneva, ch. dÉcogia 16, 1290 Versoix, Switzerland

⁵ National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

⁶ National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo, JAPAN

⁷Department of Astronomy, School of Science, Graduate University for Advanced Studies (SOKENDAI), 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan

Incremental Data Releases

We made two incremental data releases:

June 2017:

- photo-z products for Wide
- SSP-UH COSMOS data

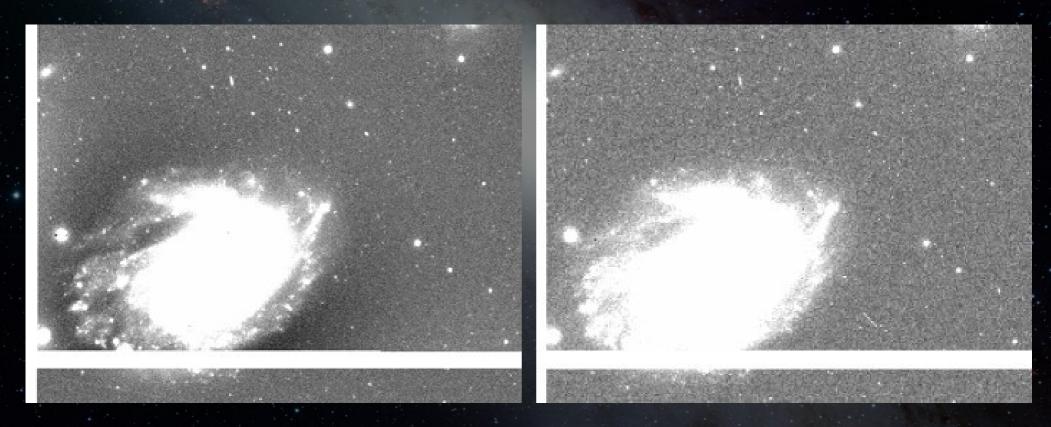
filter	Exposure time	Depth (5sigma, point source)
g	3.3h	27.8
r	1.5h	27.7
i	6.0h	27.6
z	3.5h	26.8
у	9.5h	26.2

Nov 2017:

- emission line object catalog by Hayashi+
- weak-lensing simulation data by Mandelbaum+
- mutli-band SXDS data by Mehta+
- PSF picker by Mineo-kun
- Postagestam retriever by Koike-kun

Internal Data Releases

S17A release on Sep 28 including 250sqdeg of full-color full-depth area **There was no S17B release... Apologies!**

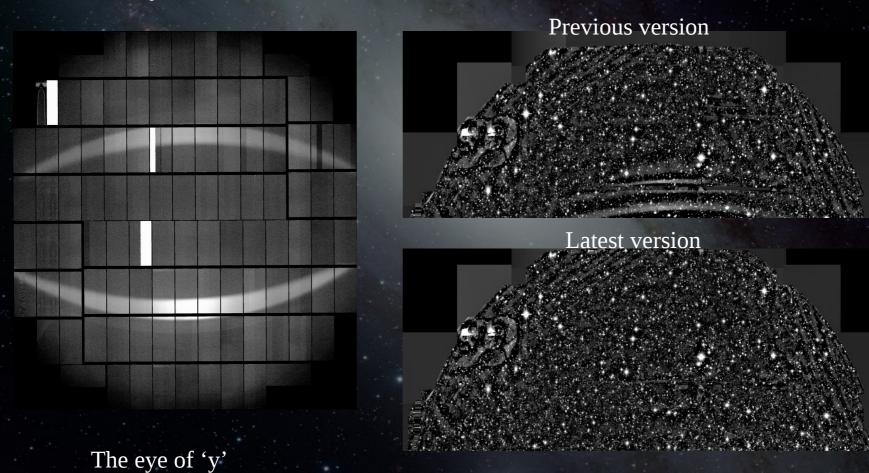

See poster Ikeda-kun's poster #7 for details.

	Field Name	HSC-g	HSC-r	HSC-i	HSC-z	HSC-y	HSC-Z
١	W01 (WIDE01H)						
	W02 (XMM)						
	W03 (GAMA09H)		and an Mark		The second secon	The state of the s	
1	W04 (WIDE12H+GAMA15H)		()		((and ()	(
	W05 (VVDS)						
	W06 (HECTOMAP)		(F		[
	W07 (AEGIS)					.0.	

Field Name	HSC-
COSMOS	
DEEP2-3	
ELAIS-N1	•
SXDS+XMM- LSS	

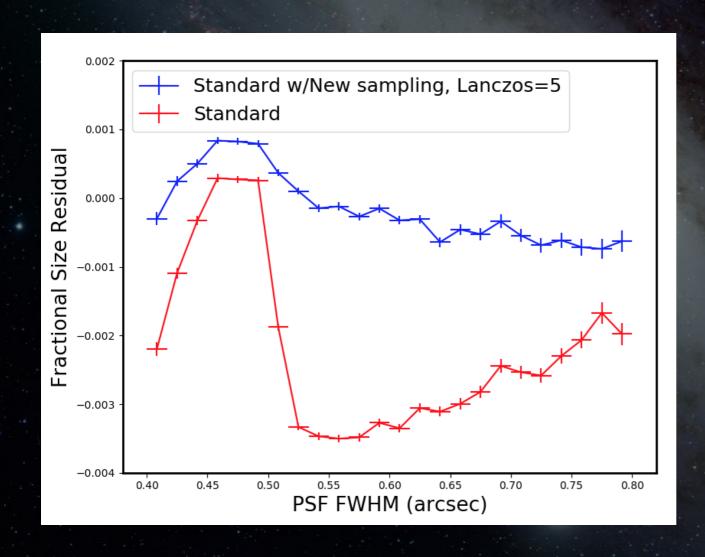
Pipeline efforts #1

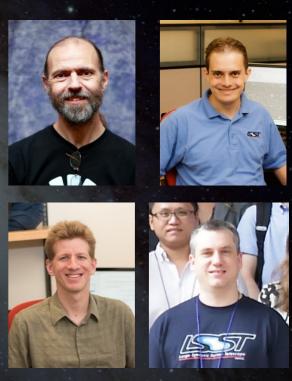
The 'global sky subtraction' algorithm works well for big galaxies. Work done by Koike-kun and Tanaka. See Poster #16 by Mineo-kun.



Previous version

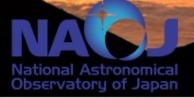
Latest version


Pipeline efforts #2


The scattered light in the y-band can now be beautifully subtracted! Work done by Mineo-kun, Koike-kun and Kawanomoto-san. See Poster #16.

Pipeline efforts #3 and more

A over-sampling bug in PSFEx has been fixed. This is a BIG fix done by our Princeton colleagues. There are more good features for the coming release.


PFS Proto-type Science Database

See Koike-kun's poster #12 for details

HSC On-Site Log System

Observers can get extremely useful QA information in a few minutes after the data acquisition. This is a beautiful system built by Furusawa-san and Koike-kun.

	_		100	200		100																				
			2045 04			uee v	CCD DEED COCHOC	270 00	F.C. F.7	F4 F4		0.64	25.44	3505 03	4 07		7.64	D-05-010004-01,				. "				
U 2	2624 0	bjectisu	2015-01-	2/03	:47:44.605	H2C-1	SSP_DEEP_COSMOS	270.00	50.5/	54.51	0.00	0.61	26.14	7505.07	1.03	3.77	5.01	N=1/5, DRA=150, DDEC=75	$\rho \Rightarrow$	δΔ	Fδ	Δ #	⇒	⇒	⇒	е
□ 2	2622 c	bject149	2015-01-	27 03	3:46:40.563	HSC-Y	SSP_DEEP_COSMOS	30.00	56.79	54.28	0.00	0.63	26.14	848.88	1.03	3.77	3.81	D-05-010004-01-00000	$\rho \Rightarrow$	δΔ	ŧδ	Δ #	⇒	⇒	⇒	e
\top																		D-05-010003-01,								
□ 2	2620 c	bject148	2015-01-	27 03	3:41:34.818	HSC-Y	SSP_DEEP_COSMOS	270.00	59.04	52.37	0.00	0.62	26.15	7386.92	1.07	3.77	3.78	N=1/5, DRA=150,	$\rho \Rightarrow$	δΔ	έδ	$\Delta \#$	⇒	⇒	⇒	е
	2610	h i 1 1 1 7	2015 01	27.07	. 10 - 70 - 762	ucc v	CCD DEED COCHOC	70.00	FO 2F	F2 10	0.00	0.77	20.14	000 40	1 04	7 77	7 76	DDEC=75			4 0	. 4				е
U 2	2018 0	bject 147	2015-01-	2/03	1:40:50./62	H2C-Y	SSP_DEEP_COSMOS	50.00	59.25	52.10	0.00	0.73	26.14	806.49	1.04	3.77	5./6	D-05-010003-01-00000 D-05-010002-01,	$\rho \Rightarrow$	δ Δ 1	F 0	Δ #	⇒	⇒	⇒	е
□ 2	2616 c	object146	2015-01-	27 03	3:35:24.847	HSC-Y	SSP_DEEP_COSMOS	270.00	60.10	52.95	0.00	0.63	26.14	7351.60	1.04	3.77	3.75	N=1/5, DRA=150,	$\rho \Rightarrow$	δΔ	ŧδ	Δ #	⇒	⇒	⇒	e
																		DDEC=75								
□ 2	2614 o	bject145	2015-01-	27 03	3:34:19.596	HSC-Y	SSP_DEEP_COSMOS	30.00	60.32	52.67	0.00	0.62	26.15	804.60	1.04	3.77	3.77	D-05-010002-01-00000	$\rho \Rightarrow$	δΔ	ŧδ	Δ #	⇒	⇒	⇒	е
	2612	hioc+144	2015 01	27.67	2.20.0E ZE1	ucc v	SSP_DEEP_COSMOS	270 00	62.55	50.37	0.00	0.70	26.14	7139.23	1.04	7 77	2 74	D-05-010001-01, N=1/5, DRA=150,	0 =	δΔ	2 4	A #	_	_		e
U 2	2012 0	DJect 144	2013-01-	2103	3.29.03.331	nsc-1	33P_DEEP_CO3MO3	210.00	02.33	30.37	0.00	0.70	20.14	/139.23	1.04	3.77	3.74	DDEC=75	$\rho \Rightarrow$	ο Δ ;	0	Δ #	→	→		е
□ 2	2610 c	bject143	2015-01-	27 03	3:27:55.074	HSC-Y	SSP_DEEP_COSMOS	30.00	62.78	50.02	0.00	0.57	26.13	782.16	1.02	3.77	3.82	D-05-010001-01-00000	$\rho \Rightarrow$	δΔ	ŧδ	Δ #	⇒	⇒	⇒	е
																		U-05-010001-04,								
□ 2	2608 o	bject142	2015-01-	27 03	3:22:17.443	HSC-Y	SSP_UDEEP_COSMOS	300.00	62.60	48.08	0.00	0.75	26.14	7825.58	1.04	3.77	3.71	N=2/5, DRA=150, DDEC=75	$\rho \Rightarrow$	δΔ	∮δ	Δ #	⇒	⇒	⇒	е
																		U-05-010001-04,								
□ 2	2606 c	bject141	2015-01-	27 03	3:16:39.238	HSC-Y	SSP_UDEEP_COSMOS	300.00	63.63	46.36	0.00	0.68	26.13	7705.77	1.02	3.77	3.76	N=1/5, DRA=150,	$\rho \Rightarrow$	δΔ	έδ	Δ #	⇒	⇒	⇒	e
_																		DDEC=75								
	2604 c	hiert140	2015-01-	27 02	·10·55 283	HSC-V	SSP UDEEP COSMOS	300 00	64.72	44.52	0.00	0.58	26.13	7468.26	1.03	3.77	3 79	U-05-010001-03, N=5/5, DRA=150,	o ⇒	δΔ	ŧδ	Λ #	⇒	⇒	⇒	е
	.004	bjccc140	2015 01	2,03	7.10.33.203	1150 1	331 _00221 _0031103	500.00	04.72	11.32	0.00	0.50	20.15	7400.20	11.05	3.77	3.73	DDEC=75		0 1 ,		_ "				
																		U-05-010001-03,								
□ 2	2602 o	bject139	2015-01-	27 03	3:05:21.903	HSC-Y	SSP_UDEEP_COSMOS	300.00	65.75	42.42	0.00	0.54	26.13	7413.72	1.03	3.77	3.85	N=4/5, DRA=150, DDEC=75	$\rho \Rightarrow$	δΔ	ŧδ	Δ #	⇒	⇒	⇒	е
□ 2	2600 f	focus138	2015-01-	27 03	3:02:29.095	HSC-Y	FOCUSING	10.00	66.19	40.89	0.00	0.54	26.16	1748.81	1.07	3.90	3.87	NODATA	ρ ⇒	δΔ	ŧδ	Δ #	⇒	⇒	⇒	e
□ 2	2598 c	bject137	2015-01-	27 02	2:56:45.024	HSC-Y	SSP WIDE	200.00	55.10	52.44	0.00	0.73	26.13	5336.93	1.03	3.77	3.72	W-05-010081-01-00005	ρ ⇒	δΔ	‡ δ	Δ #	⇒	⇒	⇒	e
□ 2	2596 c	object136	2015-01-	27 02	2:52:51.899	HSC-Y	SSP_WIDE	200.00	57.65	53.60	0.00	0.67	26.15	5229.30	1.06	3.77	3.76	W-05-010232-01-00004	ρ ⇒	δΔ	ŧδ	Δ #	⇒	⇒	⇒	е
□ 2	2594 c	object135	2015-01-	27 02	2:48:58.059	HSC-Y	SSP_WIDE	200.00	57.39	53.89	0.00	0.70	26.15	5194.94	1.05	3.77	3.78	W-05-010231-01-00004	ρ ⇒	δΔ	‡ δ	Δ #	⇒	⇒	⇒	e
□ 2	2592 c	bject134	2015-01-	27 02	2:45:00.273	HSC-Y	SSP_WIDE	200.00	59.01	49.57	0.00	0.76	26.13	5187.83	1.02	3.77	3.73	W-05-010158-01-00004	ρ ⇒	δΔ	ŧδ	Δ #	⇒	⇒	⇒	е
□ 2	2590 c	bject133	2015-01-	27 02	2:41:07.641	HSC-Y	SSP_WIDE	200.00	58.76	49.92	0.00	0.76	26.13	5164.01	1.03	3.77	3.75	W-05-010157-01-00004	ρ ⇒	δΔ	έδ	Δ #	⇒	⇒	⇒	e
					2:37:14.861		_	200.00	59.22	46.72	0.00	0.70	26.13	5105.73			_	W-05-010082-01-00004						⇒	⇒	e
		_																							retake of "object124" because	е
□ 2	2586 c	bject131	2015-01-	27 02	2:33:15.989	HSC-Y	SSP_WIDE	200.00	61.65	49.72	0.00	0.67	26.14	4946.30	1.05	3.77	3.73	W-05-010232-01-00003	$\rho \Rightarrow$	δΔ	ŧδ	Δ #	⇒	⇒	⇒ stars in "object124" image are	
+	\rightarrow			-																			+		elongated fumiy@stars retake of "object123" because	е
□ 2	2584 c	bject130	2015-01-	27 02	2:29:20.244	HSC-Y	SSP_WIDE	200.00	61.41	50.08	0.00	0.67	26.14	5027.27	1.06	3.77	3.76	W-05-010231-01-00003	$\rho \Rightarrow$	δΔ	ŧδ	Δ #	⇒	⇒	⇒ stars in "object123" image are	е
_																									elongated fumiy@stars	
□ 2	2582 b	oias129	2015-01-	27 02	2:25:54.339	NONE	BIAS	0.00	60.33	44.86	0.00	-1.00	-99.00	0.00	-9999.00			NODATA	ρ \Rightarrow	δΔ	ŧδ	Δ #	⇒	⇒	⇒	е
□ 2	2580 b	oias128	2015-01-	27 02	2:18:28.031	NONE	BIAS	0.00	61.61	42.40	0.00	-1.00	-99.00	0.00	-9999.00	3.77		NODATA	$\rho \Rightarrow$	δΔ	ŧδ	Δ #	⇒	⇒	⇒	е
□ 2	2576 b	oias126	2015-01-	27 01	1:45:22.978	NONE	BIAS	0.00	66.46	28.35	0.00	-1.00	-99.00	0.00	-9999.00	3.77		NODATA	$\rho \Rightarrow$	δΔ	ŧδ	Δ #	⇒	⇒	⇒	е
□ 2	2572 c	bject125	2015-01-	27 01	1:10:08.161	HSC-Y	SSP_WIDE	200.00	69.22	7.44	0.00	0.69	26.13	4161.61	1.03	3.77	3.72	W-05-010081-01-00004	$\rho \Rightarrow$	δ Δ ‡	δ	Δ #	⇒	⇒	⇒	е
□ 2	2570 c	bject124	2015-01-	27 01	1:06:11.813	HSC-Y	SSP_WIDE	200.00	72.26	2.56	0.00	0.79	26.13	4202.49	1.03	3.77	3.71	W-05-010232-01-00003	ρ \Rightarrow	δΔ	ŧδ	Δ #	⇒	⇒	⇒	е

HSC On-Site Log System

We are planning to release the information from the on-site system to the public because

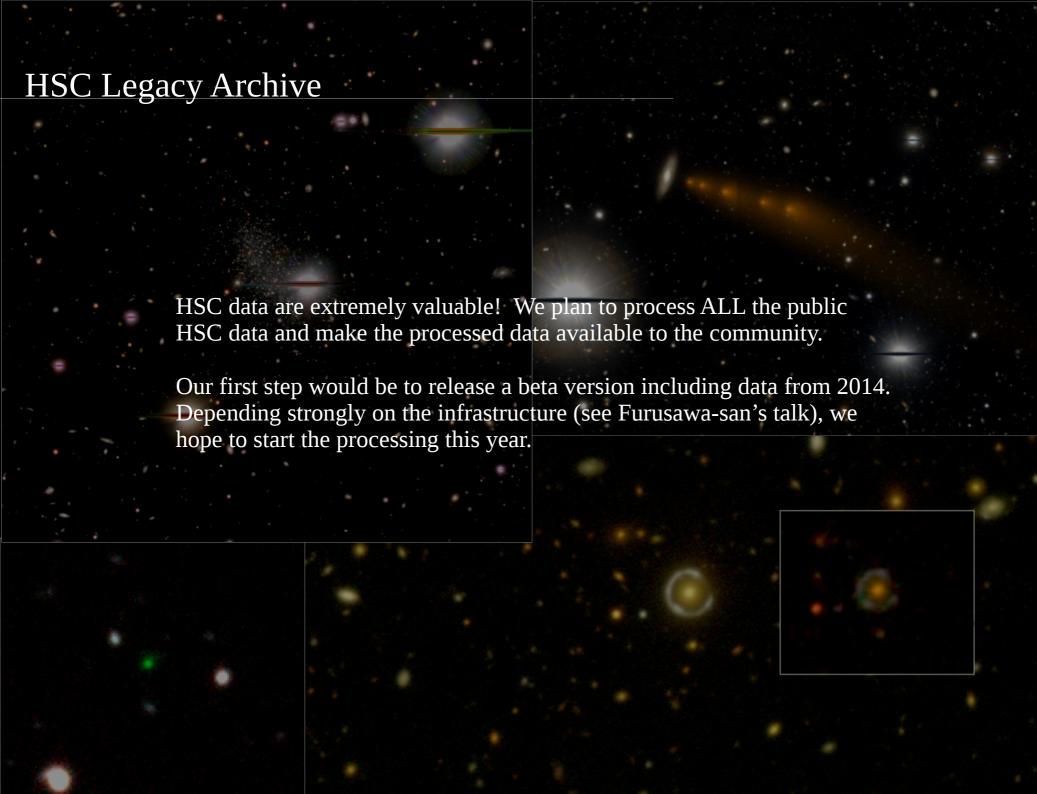
- 1) the numbers and QA plots from the onsite system are extremely useful for archive users
- 2) observers cannot access the onsite system once they left the observatory

Public users can look at all the QA info for public data. Private data can be viewed only by the PIs.

We would like to include your comments (if you left any) in the release. We will contact all the previous PIs later, but if you have any major concerns, please talk to me.

Please be aware that your future comments will also be released.

Open-Use Data Analysis


Delivery of Processed Data

We are going to start the processed data delivery service, which is;

After each observing run, we process your data with the latest version of the pipeline and send you the processed data.

We need to do more tests in the come runs, but we hope to start this service sometime this year.

Have fun with the HSC data!

