GEMINI OBSERVATORY STATUS AND PLANS

LAURA FERRARESE, INTERIM DIRECTOR, GEMINI OBSERVATORYSUBARU USER MEETINGJANUARY 17, 2018

OUTLINE

 Exploring the Universe, Sharing its Wonders

GEMINI OBSERVATORY

- Science Highlights
- The Subaru/Gemini Time Exchange Program
- Gemini Operations
- Current and Future Instrument Complement
- Partnership Status
- Observatory's Future and Strategic Initiatives

SCIENCE HIGHLIGHTS

- Jan 12 Game Over for Supernovae Hide & Seek (GeMS/GSIO)
- Dec 18 The Birth of Massive Stars Around an Unlikely Galaxy (GMOS)
- Dec 6 Supermassive Black Hole is Ahead of its Time (GNIRS)
- Nov 29 Gemini Observations Show Distant Black Hole Pair is "Photobombing" Culprit ((GMOS)

GEMINI OBSERVATORY

- Nov 20 First Known Interstellar Visitor is an "Oddball" (GMOS)
- Nov 3 Gemini Observatory Confirms Spiral Nature of Extremely Distant Lensed Galaxy (NIFS)
- Oct 16 Astronomers Feast on First Light From Gravitational Wave Event (F2/GMOS)
- Sept 22 The Galactic Center's Mysterious Quintuplet Stars Unmasked (GNIRS/NIFS)
- Sept 6 Rocky Planet Engulfment Explains Stellar Odd Couple (GRACES)
- Aug 15 The Little Star that Survived a Supernova (GRACES)
- Aug 2 Gemini Confirms a New Class of Variable Stars (GMOS)
- Jul 20 Gemini Confirms Super-distance, Superluminous Supernova (GMOS)
- Jun 30 Gemini Images Point Juno Spacecraft Towards Discovery (NIRI)
- Jun 27 Korean Astronomers Dissect a Fragmented Asteroid (GMOS)
- Jun 6 A Partly Cloudy Exoplanet (GPI)
- May 11 Gemini Tracks Distant Star Clusters with Adaptive Optics (GeMS/GSAOI)

 Exploring the Universe, Sharing its Wonders

GEMINI OBSERVATORY M Exploring the Universe, Sharing its Wonders

An Optically Faint Quasar Survey at z~5 in the CFHTLS Wide Field: Estimates of Black Hole Masses and Eddington Ratios

CFHT+UKIRT IMAGING

GEMINI OBSERVATORY M Exploring the Universe, Sharing its Wonders

An Optically Faint Quasar Survey at z~5 in the CFHTLS Wide Field: Estimates of Black Hole Masses and Eddington Ratios

CFHT+UKIRT IMAGING

GEMINI SPECTROSCOPY (THROUGH GEMINI/SUBARU TIME EXCHANGE)

Ikeda et al. 2017, ApJ, 846, 57

GEMINI OBSERVATORY .. Exploring the Universe, Sharing its Wonders

A Systematic Survey of Protoclusters at z~3-6 in the **CFHTLS** Deep Fields (See Toshikawa-san Talk on Friday!)

4.4

Toshikawa, J. et al.. 2017, ApJ, 826, 114

SUBARU/GEMINI TIME EXCHANGE

 Exploring the Universe, Sharing its Wonders

- Started in 2006B;
- Open to researchers with Japanese Citizenship, and those working in institutes in Taiwan and Japan;
- Minimum of five nights each semester (depending on request);
- Subaru users have access to
 - All Gemini proposal submission modes (including Fast Turnaround);
 - All Gemini observing modes (including queue and Target of Opportunity);

GEMINI OBSERVATORY

• All instruments (including Visiting Instruments) at both sites.

What can Gemini offer to the Subaru user community?

- Two sites! All sky access; longer monitoring for fast transients; twice the insurance against bad weather for exceptional events that can be reached from both sites;
- GeMS
- Complementarity between CHARIS/SCExAO and GPI
- Flexible operations: efficient (minutes) switching between instruments and a queue that can be adjusted in real-time, allowing for last minute changes if necessary (PIs can eavesdrop while their queue data are being taken)
- Ease of proposing outside of the regular semester cycle

 Exploring the Universe, Sharing its Wonders

USE OF GEMINI BY THE JAPANESE COMMUNITY

GEMINI OBSERVATORY

1 🗌	2017PASJ6982M	2017/10	cited: 1		≣	
	OISTER optical and near-infrared monitoring observations of peculiar radio-loud active galactic nucleus SDSS J110006.07+442144.3 Morokuma, Tomoki; Tanaka, Masaomi; Tanaka, Yasuyuki T. and 80 more					
2 🗆	2017Natur.55080J	2017/10	cited: 2		=	
2	A hybrid type la superno					tonation
	Jiang, Ji-An; Doi, Mamoru;					
3 🗆	2017ApJ84842K	2017/10			≣	
	N uSTAR Hard X-Ray Data and Gemini 3D Spectra Reveal Powerful AGN and Outflow Histories in Two Low-redshift Lyα Blobs Kawamuro, Taiki; Schirmer, Mischa; Turner, James E. H. and 2 more					
				F	=	
4 🗌	2017ApJ84657I	2017/09 r Survey at z ~ 5 in	cited: 1 the CEHTLS Wide			etes of the
	An Optically Faint Quasar Survey at z ~ 5 in the CFHTLS Wide Field: Estimates of th Black Hole Masses and Eddington Ratios					
	Ikeda, H.; Nagao, T.; Matsu	oka, K. and 5 more				
5	2017PASJ6927N	2017/04	cited: 2		≣	
	The redshift-selected sar metallicity distribution at	z < 0.4 ^{†‡}		alaxies	: The	overall
	Niino, Yuu; Aoki, Kentaro; I	lashimoto, Tetsuya a	and 7 more			
6 🗌	2017MNRAS.465.4895W	2017/03	cited: 29		=	
	H0LiCOW - IV. Lens mass model of HE 0435-1223 and blind measurement of its time- delay distance for cosmology Wong, Kenneth C.; Suyu, Sherry H.; Auger, Matthew W. and 13 more					
	2017RAA1715L	2017/02	new w. and is more	, 	=	
7 🗌			m Catalina Sky Su			e Most
	Double-lined M dwarf eclipsing binaries from Catalina Sky Survey and LAMOST Lee, Chien-Hsiu; Lin, Chien-Cheng					
8 🗌	2017MNRAS.465.2411M	2017/02	cited: 5		≣	
	A new quadruple gravitational lens from the Hyper Suprime-Cam Survey: the puzzle HSC J115252+004733					
	More, Anupreeta; Lee, Chie	n-Hsiu; Oguri, Masar	nune and 16 more			
9	2016A&A595A79M	2016/11	cited: 2		≣	
	High-contrast imaging of Mizuki, T.; Yamada, T.; Cars			ents		
10 🗌	2016MNRAS.461L37L	2016/09			≔	
	AGB stars in Leo P and t Lee (), Chien-Hsiu	heir use as metallio	city probes			

- 46 papers published since 2009 by the Japanese community using Gemini, collecting 1055 citations.
- Half of these papers make use of both Subaru and Gemini data

GEMINI OBSERVATORY

	Survey					
	Oguri, Masamune; Bayliss, M	atthew B.; Dahle, Hâ	ikon and 5 more			
35 🗌	2)12 oj., 24574 Unburned Materiar in the E	2012/01 Ejecta of Type Ia Si	otec 18 upernovae	Ē	≣	9
36 🗌 🖕	Folatelli, Gastón; Phillips, M. 2011 J., 142, 63M 1 µm Excess Sources in th Southern Equatorial Stripe	e UKIDSS. I. Three	e T Dwarfs in the S	loan D	:: Digital	Sky Survey
	Matsuoka, Y.; Peterson, B. A.	; Murata, K. L. and	8 more	_		_
37 🗌	2011MNRAS.413.3075M	2011/06	cited: 55			
	Effects of the explosion as and luminosity calibration Maeda, Keiichi; Leloudas, Gid			ype la	super	nova colour
38 🗌	2011AJ141156I	2011/05	cited: 20		≣	
	Subaru and Gemini High S Nearby Luminous Infrared Imanishi, Masatoshi; Imase, P	Galaxies		ging O	bserva	ations of
39 🗌	2011AJ141119K	2011/04	cited: 27		≣	
	The Widest-separation Sul Kuzuhara, M.; Tamura, M.; Is	-	n Candidate to a B	inary 1	l Tauri	Star
40 🗌	2010Natur.46682M	2010/07	cited: 145		≣	9
	An asymmetric explosion a supernovae Maeda, K.; Benetti, S.; Stritz			ersity	in type	e la
41 🗆	2010lcar20745M	2010/05	cited: 15	Ē	≔	
	Mid-infrared spectra of the astronomical observations Morlok, A.; Koike, C.; Tomiol	of dust in debris of		Compa	arison	with
42 🗌	2010MNRAS.402335K	2010/02	cited: 6	P	=	9
12	Stellar population and dus					z = 1.135
	Kawara, K.; Oyabu, S.; Mats	uoka, Y. and 6 more		-	-	
43 🗆	2010ApJ709.1374K	2010/02	cited: 25	F	≔	
	Subaru And Gemini Obser Compact Object Kubota, K.; Ueda, Y.; Fabrika		New Constraint O	n The	Mass	Of The
44 🗆	2009ApJ704117K	2009/10	cited: 3	F	≔	
	Lyman Break Galaxies at z Kajino, Hiroki; Ohta, Kouji; Iv					-
45 🗌	2009MNRAS.395.1087S	2009/05	cited: 13		≣	9
	Ultraviolet Fell emission in Sameshima, H.; Maza, J.; Ma		ore			
46 🗌	2009ApJ695L88F	2009/04	cited: 12	Ē	≣	9
	Hot Debris Dust Around H Fujiwara, Hideaki: Yamashita,		aisuke and 10 more			

- 46 papers published since 2009 by the Japanese community using Gemini, collecting 1055 citations.
- Half of these papers make use of both Subaru and Gemini data
- Papers target both nearby and high redshift Universe

GEMINI OBSERVATORY M Exploring the Universe, Sharing its Wonders

SUBARU/GEMINI TIME EXCHANGE PROGRAM @ GEMINI

- 27.3 nights allocated to the Subaru community on Gemini since 2016A
- Time request almost equally divided between Gemini North and South
- GMOS by far the most requested instrument, followed by GNIRS

GEMINI OBSERVATORY Sharing its Wonders

SUBARU/GEMINI TIME EXCHANGE PROGRAM @ SUBARU

- 21.5 nights allocated to the Gemini community on Subaru since 2016A
- HSC by far the most requested instrument, followed by CHARIS/SCExAO

GEMINI OBSERVATORY Constraining the Universe, Sharing its Wonders

OPERATIONS

PROPOSAL MODES:

- **REGULAR PROGRAMS** 70% of all observing; call twice a year, deadlines ~Sept 30 and ~Mar 30.
- LARGE AND LONG PROGRAMS
 Proposals accepted annually for observations starting in the B semester. Extend for 2 to 6 semesters; no lower limit on amount of time; up to 20% of available observing time at each telescope. 20 programs accepted to date (7 on-going). GUARANTEED 80% COMPLETION RATE
- FAST TURNAROUND 10% of time at each telescope. Proposals accepted monthly. If you apply, you will be asked to peer review the other proposals.
- **POOR WEATHER PROPOSALS** Can be submitted at any time. Executed only if nothing else in the queue is observable.

OBSERVING (done from the Base Facility in Hilo and La Serena):

- **QUEUE** Carried out for the PI by the Observatory staff. Observing conditions are best matched to the program. PIs can "eavesdrop" during the observations.
- **CLASSICAL** Carried out by the PIs at the PI request (rare, 1 night minimum).
- **PRIORITY VISITOR OBSERVING MODE** PIs are at the base facility for any length of time, and can interrupt the queue to run their own program (Band 1 Programs only)

GEMINI OBSERVATORY M Exploring the Universe, Sharing its Wonders

OPER Letters of intent due February 2, Proposals due March 30 for start in 2018B (August 1, 2018)

PROPOSAL MODES:

• REGULAR PROGRAMS

70% cfail observing; call twice a year, deadlines ~Sept 30 and ~Mar 30.

- LARGE AND LONG PROGRAMS Proposals accepted annually for observations starting in the B semester. Extend for 2 to 6 semesters; no lower limit on amount of time; up to 20% of available observing time at each telescope. 20 programs accepted to date (7 on-going). GUARANTEED 80% COMPLETION RATE
- FAST TURNAROUND 10% of time at each telescope. Proposals accepted monthly. If you apply, you will be asked to peer review the other proposals.
- **POOR WEATHER PROPOSALS** Can be submitted at any time. Executed only if nothing else in the queue is observable.

OBSERVING (done from the Base Facility in Hilo and La Serena):

- **QUEUE** Carried out for the PI by the Observatory staff. Observing conditions are best matched to the program. PIs can "eavesdrop" during the observations.
- **CLASSICAL** Carried out by the PIs at the PI request (rare, 1 night minimum).
- **PRIORITY VISITOR OBSERVING MODE** PIs are at the base facility for any length of time, and can interrupt the queue to run their own program (Band 1 Programs only)

FACILITY INSTRUMENS

GEMINI OBSERVATORY

Gemini North

- <u>GMOS</u> (0.36-0.95 μm multi-object, long-slit and IFU spectrograph and imager)
- NIRI (1-5 µm imager)
- <u>NIFS</u> (1.0-2.5 μm integral field spectrograph)
- <u>GNIRS</u> (1-5 μm long-slit and 0.9-2.5μm crossdispersed spectrograph)
- AO system: ALTAIR

Gemini South

 Exploring the Universe, Sharing its Wonders

- <u>GMOS</u> (0.36-0.95 μm multi-object, long-slit and IFU spectrograph and imager)
- <u>GSAOI</u> (0.9-2.4 µm high-resolution imager for use with Multi-Conjugate Adaptive Optics system "GeMS")
- GPI (0.9-2.4 µm adaptive-optics imaging polarimeter/integral-field spectrometer)
- FLAMINGOS-2 (1.0-2.4 µmlong-slit spectrograph and imager)
- AO system: <u>GeMS</u> (Multi-conjugate adaptive optics system, GSAOI and Flamingo 2)

GEMINI HIGH-RESOLUTION SPECTROGRAPH (GHOST)

GEMINI OBSERVATORY

Fiber-fed, white pupil échelle, high efficiency spectrograph capable of two object spectroscopy

Simultaneous Wavelength Coverage:	363 - 950 μm		
Resolution:	Standard R=50,000		
	High R=75,000		
Limiting Magnitude:	17.5 at 450 nm		
	(30 sigma per res element)		
Spatial Sampling:	over 1.2 arcsec		
RV Precision:	Standard res.: 600 m/s;		
	High res.: 10 m/s		
Multiplex:	2 object + sky in		
	7.5 arcmin FOV at R=50K		

Science: Galactic structure, Stellar Abundances, Globular Clusters, GAIA follow-up, exoplanets, GRB

Integration and Testing: June-October 2018 Shipping to Gemini: November 2018 Commissioning: February-April 2019

 Exploring the Universe, Sharing its Wonders

Australian National University

GEMINI OBSERVATORY Sharing its Wonders

Ο C T O C A M

8-channel imager and spectrograph capable of multi-band imaging, long slit broadband spectroscopy and high-time-resolution (Gemini-South)

Simultaneous Spectral Coverage: 0.40-2.35 μm (imaging) 0.37 - 2.35 μm (spectroscopy) Spectral Resolution: R=4,000 Time Resolution: 50ms FOV: 3' X 3' (square) D= 4.24' (circular) Plate Scale: 0.18"/pixel

Science: Transient/variable events (fast radio bursts, gravitational wave sources, gamma-ray bursts, Supernaovae, tidal disruption events), X-ray binaries, Neutron Stars, White Dwarfs, Transiting Extrasolar Planet, Trans-Neptunian Objects, Asteroseismology, eclipsing binary systems, AGNs, Galaxy clusters

Contract Signed on March 3, 2017 CoDR passed on August 3, 2017 Expected Commissioning on March 2022

VISITING INSTRUMENTS

•• Exploring the Universe, Sharing its Wonders

Current @ Gemini North

- **GRACES** High-resolution, R ~ 67,500, optical (0.4-1 micron) spectrometer. 270 m fiber optics feed from the Gemini North telescope to CFHT/ESPaDOnS.
- **TEXES** High resolution (R ~ 4,000-100,000) mid-infrared (4.5-25 micron) spectrometer (Univ. of Texas, formerly at McDonald Obserbatory and IRTF)
- ALOPEKE Dual-channel visual-wavelength camera providing both diffraction limited and wide-field imaging capabilities with SDSS filters. (NASA Ames Research Center, commissioned at GN October 2017)
- **POLISH2** High-precision polarimeter (CalTech, formerly at Hale 5m Telescope)

GEMINI OBSERVATORY

Current @ Gemini South

- DSSI Diffraction-limited (FWHM~0.02" at 650nm) speckle optical imaging of targets as faint as V~16-17 over a ~2.8 - 5.6 arcsecond field-of-view (Southern Connecticut State University, formerly at WIYN)
- IGRINS Cross-dispersed immersion grating near-IR (1.45 2.45 μm)spectrograph with R=45,000 (University of Texas and KASI, formerly at McDonald Observatory and Lowell Observatory)

VISITING INSTRUMENTS

•• Exploring the Universe, Sharing its Wonders

GEMINI OBSERVATORY

Future:

- **GIRMOS** (GS): MCAO multi-object, integral-field spectrograph, with 6 arcsec FOV, and spectral resolutions R=3000 and R=6000. University of Toronto, built specifically for Gemini. 13M CAN\$ through CFI with matching funds from the Provinces. First light 2023
- MAROON-X (GN): R=80,000 fiber fed high-precision radial-velocity spectrograph covering the range from 500 to 900 nm. University of Chicago, built for Magellan. \$315K awarded by NSF to build the top end. First light 2019

Planned:

- BATMAN (GS): Digital Micromirror Device (DMD) spectrometer (MOS/IFU/Imaging) with large FOV (88x88 arcsec), from LAM, Marseille. In construction for TNG, expected first light at TNG in 2017, expected move to Gemini South in ~2020. Requires GeMS.
- GMOX-2 (GS): Wide-band R~5000 spectrograph covering 0.32 2.4μm using existing MEMS technology, Led by JHU, not yet funded. Requires GeMS.
- TIKI (GS) Exoplanet Mid-IR AO chronographic imager, led by UVic/HIA. Uses GeMS. Not yet funded, expected ~2023

PARTNERSHIP STATUS

2018 Partners' Shares

O&M Budget: \$27.1M IDF Contributions: \$2.7M

Limited Term Collaborators:

- Korea
- Weizmann Institute
- Ben Gurion University

Current International Agreement expires in 2021; "assessment point" in late 2018

The Gemini Board has encouraged new collaborations and is open to considering potential new partners:

- Collaborations should always be in the best strategic interests of the Observatory and strengthen the current partnership;
- Shares in the 5% to 20% range are considered.

THE FUTURE (BEYOND 2021)

 Exploring the Universe, Sharing its Wonders

The Gemini Board has developed a <u>"Beyond 2021 Strategic Vision</u>", the main points of which are:

• **Preservation of PI science.** As the only 8m class public-access optical/NIR facility available to the US, Canadian, Argentinian and Brazilian communities, Gemini will continue o support PI-mode observing and general purpose instrumentation.

GEMINI OBSERVATORY

- Continue to offer Fast Turnaround, Long and Large Programs, and DD time in addition to the regular proposal calls;
- 2. Continue to encourage Visiting Instruments as a way to broaden the Observatory capabilities and provide the community with additional opportunities;
- 3. Develop robust data reduction pipelines

THE FUTURE (BEYOND 2021)

The Gemini Board has developed a <u>"Beyond 2021 Strategic Vision</u>", the main points of which are:

- **Preservation of PI science.** As the only 8m class public-access optical/NIR facility available to the US, Canadian, Argentinian and Brazilian communities, Gemini will continue to support PI-mode observing and general purpose instrumentation.
- **Synergy with other facilities**. The scientific impact of the post-2021 Gemini will be enhanced by operating in a mode that is closely synergistic with other observatories. This implies that:
 - Some degree of specialization is desirable for either or both telescopes;
 - The two telescopes should be allowed to take on independent identities.

THE

The Gemini Boar which are:

• **Preservation o** available to the continue to sup

Gemini-South: the premier facility for follow-up investigations of targets identified by LSST

Direct operations and instrumentation development towards specializing in fast follow-up of transients , including:

- 1. Providing multi-band, high-cadence photometry (OCTOCAM, 2022) and medium and high resolution spectroscopy (GHOST, 2019)
- 2. Incorporating Gemini in an Observatory network to optimize rapid follow-up of LSST targets through a common and efficient proposal process and triggering mechanism.

• Synergy with other facilities. he scientific impact of the post-2021 Gemini will be enhanced by operating in a mode that is closely synergistic with other observatories. This implies that:

• Some degree of specialization is desirable for either or both telescopes;

GEMINI OBSERVATORY

• The two telescopes should be allowed to take on independent identities.

Gemini-South is naturally positioned to join a consortium of Southern Telescopes. The same opportunity is open to Gemini-North within a network of Maunakea Observatories

Gemini-North: an AO Renaissance

- ~2019: upgrade Altair and install new IFUs on GNIRS
- ~2020: upgrade and commission GPI
- ~2022: deploy the next Generation AO system (GeMS-North?)

 Exploring the Universe, Sharing its Wonders

~2023: commission GIRMOS

THE FUTURE (BEYOND 2021)

GEMINI OBSERVATORY Constitution Sharing its Wonders

The Gemini Board has developed a <u>"Beyond 2021 Strategic Vision</u>", the main points of which are:

- **Preservation of PI science.** As the only 8m class public-access optical/NIR facility available to the US, Canadian, Argentinian and Brazilian communities, Gemini will continue to support PI-mode observing and general purpose instrumentation.
- **Synergy with other facilities**. The scientific impact of the post-2021 Gemini will be enhanced by operating in a mode that is closely synergistic with other observatories. This implies that:
 - Some degree of specialization is desirable for either or both telescopes;
 - The two telescopes should be allowed to take on independent identities.

The NSF has mandated AURA to integrate its national research assets in a single, matrixes organization (the National Center for Optical and Infrared Astronomy, NCOA).

- NCOA will include Gemini, NOAO, and LSST Operations;
- The National Science Board review is expected in February 2018;
- Beginning of NCOA Operations expected in October 2018;
- Gemini users will not be immediately impacted by the reorganization, but will indirectly benefit from it in the long run.

THANK YOU ありがとうございます

