Constraining primordial black hole dark matter with HSC observation of M31

ArXiv #[1701.02151]

Hiroko Niikura (UTokyo/KIPMU)

Collaborators: Masahiro Takada, Naoki Yasuda (Kavli IPMU) Robert Lupton (Princeton), Takahiro Sumi (Osaka), Surhud More, Anupreeta More, Masamune Oguri (Utokyo), Masashi Chiba (Tohoku)

Target: dark matter in the galactic halo

- Searching for dark matter in the local universe
 - Massive Compact Object (MACHO), Weakly Interacting Massive Particle (WIMP), Primordial Black Hole (PBH)
- Primordial black hole (PBH)
 - Proposed to be generated in the early universe, and can survive as dark matter today if not evaporated (Hawking 1974)
 - Previous research still leaves some room for PBH to be a part of dark matter
 - This study, the M31 microlensing search, targets PBHs with10⁻¹⁰M_{sun}

Credit: J. Bullock/M. Geha/UCI.

Search of magnification event due to microlensing effect

Gravitational microlensing effect due to PBHs

Magnification effect due to microlensing

- Gravitational lensing effect, only proved by magnification (separation angle of two images is ~µ arcsec and cannot be separated)³/2
- Time variance of magnification (light curve) depends on lens mass and impact parameter β.
- Time scale: a few months for MACHO(1M_{sun}), a few hours for PBH(10⁻⁷M_{sun})

$$t_0 = \frac{R_E}{v} \simeq 1.6 \text{hours} \left(\frac{M}{10^{-7} M_{\odot}}\right)^{\frac{1}{2}} \left(\frac{xDs}{100 \text{kpc}}\right)^{\frac{1}{2}} \left(\frac{220 \text{km/sec}}{v}\right)$$

★ Since M31 contains many stars (>tens of million stars), we can expect high event rates for PBH microlensing

 \rightarrow Our target (M31) expects high event rate!

PBH microlensing event rate for one night obs. of M31

Assuming all dark matter is PBH

• Cumulative optical depth of microlensing

• Microlensing event rate at M31 region

Assume NFW model for each of the MW and M31 halos (Klypin 2002)

If all the dark matter in the MW and M31 halos are PBHs with M_PBH $\sim 10^{-10}M_{sun}$, we expect more than one microlensing event of a few tens mintuite timescale for $\sim 10^6$ stars, for 7 hour long observation

M31has ~10¹¹ stars, highly expected! $_4$

Observation: wide field survey of PBH microlensing events using HSC

- Search for gravitational lensing effect by PBH, a candidate of dark matter (or put constraint on the abundance of PBH.)
- The wide and deep imaging with Hyper Suprime-Cam; HSC
 - ★ Can cover the entire disk and bulge regions of M31 with its one pointing
 - ★ 90sec exposure can reach to ~26mag depth for a star
- Observation for 7-hours, taking images every 2 minutes at M31disk region (r-band)

Detection of transients: difference images

Pixel lensing regime: multiple stars in each CCD pixel

unsimilar to stars

Detection of variable star candidates: difference images (time scale>6 min.)

• Observation: 188 images (+three focusing)

detect transients on every 63 difference images created from a Reference and Target images.

- Transient candidates are those detected more than twice among 63 difference images (time scale > 6 min.)
- Photometry on one-visit image (194 warp images) for light curves

Result: Distribution of transient candidates

HSC-M31 focal plane

More than 10,000 transient candidates in one field-of-view of HSC. (6 min.-)

- fake (incl. RR-Lyrae)
- Cepheid variable
- asteroid
- \star stellar flare
- eclipsing binary
- contact binary

Analysis: Selection of microlensing candidates (6 min.-4 hours)

One remaining candidate..

Discussion: Constraint on the PBH abundance

★ The expected number of events (from 7-hour observation)

• From null-detection of microlensing events from PBHs, we can put constraint on the upper limit on the abundance of PBH to the total dark matter

The tightest constraint on the abundance of PBHs

• From null-detection of microlensing events from PBHs, we can put constraint on the upper limit on the abundance of PBH to the total dark matter

• From null-detection of microlensing events from PBHs, we can put constraint on the upper limit on the abundance of PBH to the total dark matter

• Assumed the solar radius for source star size (can be optimistic)

+ Summary

- Used the image difference technique to identify variable star candidates; indeed found many secure variable stars (>3,000) such as stellar flares and contact/eclipse binaries
- One remaining candidate of PBH microlensing; need additional observation to reveal the nature of the candidate
- Use the microlensing search results to obtain the tightest upper bound on the abundance of PBHs
- When combined with other observational constraints, our results rule out almost all the window of PBH mass scales

Future works :

• Tighter constraint from further observation (one more HSC night for closing the PBH window..?)

