Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs)

Yoshiki Matsuoka (NAOJ → Ehime Univ.)

on behalf of the SHELLQs collaboration

Subaru User's Meeting (Mitaka; Jan 10-12, 2017)

SHELLQs

Subaru High-z Exploration of Low-Luminosity Quasars

ជ

Members

<u>Y. Matsuoka¹ (PI)</u>

M. Akiyama², N. Asami³, S. Foucaud, T. Goto⁴, Y. Harikane⁵, H. Ikeda¹, M. Imanishi¹, K. Iwasawa⁶, T. Izumi⁵, N. Kashikawa¹ T. Kawaguchi⁷, S. Kikuta¹, K. Kohno⁵, C.-H. Lee¹, R. H. Lupton⁹, T. Minezaki⁵, T. Morokuma⁵, T. Nagao⁸, M. Niida⁸, M. Oguri⁵, Y. Ono⁵, M. Onoue¹, M. Ouchi⁵, P. Price⁹, H. Sameshima¹⁰, A. Schulze⁵, T. Shibuya⁵, H. Shirakata¹¹, J. D. Silverman⁵, M. A. Strauss⁹, M. Tanaka¹, J. Tang¹², Y. Toba⁸ ¹NAOJ, ²Tohoku, ³JPSE, ⁴Tsinghua, ⁵Tokyo, ⁶Barcelona, ⁷Sapporo Medical, ⁸Ehime, ⁹Princeton, ¹⁰Kyoto Sangyo, ¹¹Hokkaido, ¹²ASIAA

High-z quasars - Unique probe of the early Universe

Fundamental questions we aim to answer:

<u>Why do supermassive black holes</u> (SMBHs) exist?

- ★ When were they born?
- ★ What were their seeds?
- \star How did they grow in the early and late epochs of the cosmic history?

<u>How did the host galaxies form and</u> (co-)evolve?

★ When and how did the first stellar-mass assembly happen?

- * Did SMBHs impact the host galaxy evolution? If so, how?
- \star Do they mark the highest density peaks of the DM distribution?

When and how was the Universe reionized?

- ★ When did re-ionization start and complete?
- \star How did it proceed, as a function of space and time?
- \star What provided the ionizing photons?

and many more!

Past and ongoing surveys

Subaru User's Meeting (Mitaka; Jan 10-12, 2017)

Subaru Hyper Suprime-Cam SSP survey

Hyper Suprime-Cam (HSC)

* 116 2K x 4K Hamamatsu FD CCDs (104 CCDs for science exposures)
* Circular FoV of 1°.5 diameter
* Miyazaki et al. (2016, in prep.)

The HSC SSP (Subaru Strategic Program) survey
 * 300 Subaru nights over 5 years, started in early 2014.

Wide: $r_{AB} < 26.1 \text{ mag over } 1400 \text{ deg}^2$ **Deep**: $r_{AB} < 27.1 \text{ mag over } 27 \text{ deg}^2$ **UDeep**: $r_{AB} < 27.7 \text{ mag over } 3.5 \text{ deg}^2$

***** Filters: (*g, r, i, z, y*) in **Wide**, + NBs in **Deep** & **UDeep**

"Needles in a haystack"

Bayesian probabilistic selection

<u>Quasar probability</u>: $P_Q = W_Q/(W_Q+W_D)$ W_Q (m, det) = $\int \int \rho_Q$ (m_{int}, z) Pr (det | m_{int}, z) Pr (m | m_{int}, z) dm_{int} dz W_D (m, det) = $\int \int \rho_D$ (m_{int}, t_{sp}) Pr (det | m_{int}, t_{sp}) Pr (m | m_{int}, t_{sp}) dm_{int} dt_{sp}

→ Spectroscopic follow-up of all the photometric candidates with P_Q > 0.1 - Subaru/FOCAS, GTC/OSIRIS, Gemini/GMOS-S

Progress to date

The HSC survey has imaged ~250 deg² (full color, full depth) of the planned Wide fields, as of Jan 2017. Most of our candidates have come from this Wide layer so far.
 * Spectroscopic follow-up is underway: ~50 objects have been identified so far.

Subaru/FOCAS: 1 night in S15A... weathered out

 4 nights in S15B... mostly clear
 5 nights in S16A... perfectly clear
 20 nights in S16B-S18A ("intensive")... 2.5/5 successful so far

 GTC/OSIRIS and Gemini/GMOS-S: observe brighter objects than do FOCAS

Multi-wavelength follow-up observations are planned/underway.
 Tirat diagonary part published (Material/a et al. 2016, Ap. L. 2020)

★ First discovery paper published (Matsuoka et al. 2016, ApJ, 828:26).

Quasars

- ***** 30 new quasars at 5.9 < z < 6.9 (+ 5 quasars recovered) over ~100-150 deg².
- \star Increasing fraction of absorption features toward higher-z and lower-L?
- * Quasar/galaxy separation is not trivial, even with spectra. We tentatively classify all the objects with L(Ly α) > 10⁴³ erg/s or FWHM(Ly α) > 500 km/s (uncorrected for IGM absorption) as AGNs or possible AGNs.

Galaxies

- * 9 luminous galaxies at 5.7 < z < 6.1, with $-23.5 < M_{1350} < -22$ mag.
- * We excluded extended sources from our selection, so this result gives us the lower limit of the number density of high-z luminous galaxies.

Brown dwarfs and low-z [O III] emitters

- Small number of contaminating brown dwarfs. Most of these objects have low quasar probability P_Q.
- * 2 type-II quasars or low-metallicity star-forming galaxies at $z \sim 0.8$, with $L_{[OIII]} \sim 10^{42.5}$ erg/s. The strong [O III] lines mimic Ly α at $z \sim 6$.

Some sample characteristics

Subaru User's Meeting (Mitaka; Jan 10-12, 2017)

Some sample characteristics

Multi-wavelength follow-up efforts

- * "X-SHOOTER spectroscopy of low-luminosity quasars at z > 6.4" (Onoue+)
 VLT/X-shooter NIR spectroscopy of 3 quasars (IGM, SMBH mass, and metallicity)
- * "Measuring the SMBH mass of a low-luminosity quasar at z = 6.26" (Onoue+) Gemini/GNIRS NIR spectroscopy of 1 quasar (IGM, SMBH mass, and metallicity)
- * "Probing the star formation nature and co-evolutionary relations of low-luminosity quasars at z > 6" (Izumi+)

ALMA observations of 4 quasars (SFR, dust/gas mass, M_{BH} - σ relation)

* "On the submm nature of the low-luminosity BAL quasars at z ~ 6-7 discovered by Subaru/HSC" (Izumi+)

ALMA observations of 2 quasars (redshift, SFR, dust/gas mass, outflows)

 * "Uncovering cold ISM of very massive galaxies at z ~ 6 discovered by the extensive large-area deep Subaru/HSC survey" (Harikane+)
 ALMA observations of 4 galaxies (SER, dust mass, outflows, link to Lvg properties)

ALMA observations of 4 galaxies (SFR, dust mass, outflows, link to Lya properties)

Future Prospects

- * The HSC-SSP survey will continue to observe the planned 1,400 deg² in the Wide component, until 2019-2020.
- * We will continue our high-z quasar survey, keeping pace with the HSC survey.
- We are starting to look at the Deep (27 deg²) and the UDeep (3.5 deg²) fields, but severer galaxy contamination would be a critical issue.

★ We will keep efforts to get sufficient amount of spectroscopic time.

- ✓ "Subaru Intensive program" has been approved for our project; 20 nights in 2016B 2018A.
- ★ Various follow-up studies are underway.
- ✓ luminosity function
- ✓ IGM neutral fraction through GP and damping-wing measurements
- SMBH mass and Eddington ratio distributions
- ✓ metallicity and chemical evolution
- \checkmark star formation, dust, and gas in the host galaxies
- \checkmark ionized (Ly α) halos
- Subaru Prime Focus Spectrograph (PFS) will come on stage at ~2019, and will start a massive spectroscopic survey over the HSC survey area.

