Input to future Subaru AO systems from tomography AO experiment RAVEN - what we have learned / achieved -

Masayuki Akiyama (Tohoku Univ.) Yoshito Ono (LAM France, Tohoku Univ.) Shin Oya (NAOJ)

INTRODUCTION TO TOMOGRAPHIC AO

Classical vs. tomographic LGS AO system

- In the classical AO system, integrated wavefront distortion is measured with one light source, i.e. <u>turbulence layers are degenerated</u>.
- In the tomographic AO system, each wave-front sensor measures integrated wavefront distortion from one light source, but multiple light sources and sensors are used to <u>estimate the turbulence layer at each altitude separately.</u>

Point Spread Function with tomographic AO

Simulation with 30m aperture

Tomographic AO

Flexibility of tomographic AO systems

• In the tomographic AO system, AO correction performance can be optimized by scientific purpose

Next generation extremely large telescope, TMT (Thirty Meter Telescope) requires a tomographic AO system, because of the larger aperture size and larger "cone" effect.

TESTING THE TOMOGRAPHIC WAVEFRONT ESTIMATION ON-SKY WITH SUBARU/RAVEN

Tomography AO on-sky demonstration : RAVEN

- On-sky demonstrator of tomography AO system on the Subaru telescope
- PI: Colin Bradley (U.Vic, Canada) in collaboration with NRC, NAOJ, Tohoku U.

9/24

Tomography AO on-sky demonstration : RAVEN

• Correcting for 2 target directions based on WFS data of 3 natural guide stars. Pick-off Arms

Broadband image, λ =1.0-1.7 μ m

Tomography matrix construction with the real-time atmospheric profiling

- Tomography matrix are constructed with
 - 1. Configurations of the reference light sources

2. Turbulence height profile

Cannot be fully separated with the
limited measurements.
Turbulence height profiles are used to
set up the turbulence layer altitudes
and strength of each layer

<u>3. Wind height profile (for</u> <u>predictive estimation)</u>

 Turbulence height profile can be estimated with taking crosscorrelation between two WFSs monitoring two different reference stars.
 12/24

Tomography AO ingredient I : Turbulence height profile

• Real-time turbulence height profiling with $cross-correlation of_{WFS 1-2} WFS 2-3 WFS 3-1 WFS 3-1 WFS 5-3 WFS 5-3$

 C_{yy}

Ono et al. 2016 SPIE **13/24**

Tomography AO ingredient II : Wind profile

• Wind direction and velocity of each turbulence layer can be estimated with cross-correlation of wavefront sensor data at two different time steps.

Tomography AO ingredient II : Wind profile

• Result of a real-time wind profiling above Subaru.

15/24

Tomography matrix : with atm. profiling

Tomography matrix : "cross-check"

20140514_043709, ch2, Empirical, Cri:-1.30

RAVEN AO correction summary

- Correction performance in MOAO mode is similar to GLAO mode
 - Partly explained with strong ground-layer component.
 - Unstable DM reference shape affects both of the MOAO and GLAO modes, and results in similar performance.

Turbulence height profiling results

RAVEN profiling confirms <u>strong ground-layer</u>
 <u>component</u> at Maunakea.

19/24

TOMOGRAPHIC AO FOR ASTRONOMICAL OBSERVATIONS

Next generation tomographic AO system for Subaru telescope

- Tomographic AO system can achieve
 - Good AO correction in shorter wavelength range, laser AO system in the "optical" wavelength
 - Moderate AO correction in very wide-field of view

 Wavefront measurement unit with 4 WFSs.

WFS design for tomographic AO experiment with LGSs

• Higher sampling than RAVEN can be achieved with bright LGSs.

T.Watanabe : master student

RAVEN sampling (9x9~90cm)

NEW-WFS sampling (32x32~26cm)

Summary

- Tomographic AO system is a necessary system to achieve
 - good AO correction in optical wavelength and higher spatial resolution with Subaru.
- Tomographic AO concept is demonstrated on-sky with Subaru, and has been maturing.
- Tomographic AO system enables a variety of AO systems.
 - ULTIMATE-Subaru : AO not only for <u>case studies</u>, but also for <u>explorations/surveys</u>.
 - TMT-AGE : TMT as a spectrosopic surveyer

ACKNOWLEGEMENT

- RAVEN is a collaboration project among Univ. Victoria (Canada), NRC (Canada), Subaru telescope, and Tohoku Univ.
- We would like to thank all the members of the RAVEN project.

First run in May 2014.

Second run in Aug. 2014.

Limitation of a classical AO with one LGS

Simulated on-axis image of a point source. •

TMTinst_20120606_akiyama/NFIRAOS1_1LGS_psfimages.gif

Tomography AO ingredient II : Wind profile

²⁷

Turbulence height profiling results

• RAVEN profiling confirms <u>strong ground-layer</u>

Ono et al. 2016, MNRAS, in press

28

"Cross-check" the tomography matrix directly with measured dataset

• "Cross-check" tomography estimation with the WFS measurements from tomography WFSs and the WFS in the target optical path : "Learn & Apply" method.

Tomography matrix construction with the real-time measurement

- <u>Tomography matrix</u> are constructed with
 - Configurations of the reference light sources
 - Turbulence height profiles
 - Wind height profiles

Updates every 10 min

The last two parameters are estimated <u>in real-time</u> <u>atomospheric monitoring</u> with the same WFS measurements

How to check whether the derived tomography matrix is optimal or not ?

Turbulence height profile: seeing

• Seeing value at 500nm :

Ono et al. 2016, MNRAS, in press

Turbulence height profile: seeing

• Contribution from the ground-layer (h<1.5km) component :

Ono et al. 2016, MNRAS, in press

Turbulence height profile: seeing

• Contribution from the ground-layer (h<1.5km) component :

Ono et al. 2016, MNRAS, in press