

Gemini Update

Scot Kleinman Associate Director of Development

What is AURA?

AURA manages major operating observatories

Gemini Observatory National Optical Astronomy Observatory (NOAO) incl. Kitt Peak, CTIO, SOAR National Solar Observatory (NSO) Space Telescope Science Institute (STScI)

AURA participates in construction of new astronomical facilities

Daniel K. Inouye Solar Telescope (DKIST) - construction Large Synoptic Survey Telescope (LSST) - construction James Webb Space Telescope (JWST) - operations

The Future

Our Board of Directors is generating an updated *Strategic Vision* The emerging framework is to:

- Allow Gemini North and South to diverge if advantageous to do so
- Allow each site to evolve within their surrounding systems
- Allow some specialization while keeping >~50% for general use

We are looking at operating **Gemini South** as part of an AURA Southern network of telescopes. **Gemini North** could be part of that structure, part of a new *Maunakea confederation*, or both.

Gemini's strengths will include its operational flexibility and always available broad range of instrument capabilities.

We won't fully specialize, so you can! (Scot's unofficial motto)

What we did on our summer vacation

Completed our transition program

Reduced operating costs by 25% Operate from base facilities at both sites Many other cost saving initiatives

New international partnership agreement takes us to 2021 South Korea and Australia currently in as limited term partners

New cooperative agreement between NSF & AURA through 2022

Completed Gen 4#3 Design and Build RfP

Expanded visitor and community instrument programs

Completed second call for facility instrument upgrades

Started procurement for new lasers for both telescopes

Proposing for time at Gemini

The regular proposal: once per semester, through the national Time Allocation Committees (TAC) for regular proposals (moderate oversubscription)

Large & Long Programs: *once per year*, through the Large Program TAC for large and/or long **ambitious** proposals (high oversubscription)

20%

Fast turnaround programs: *once per month*, peer reviewed, no TAC for short, rapid, immediate and/or follow-up proposals (higher oversubscription than regular TAX)

You have access to all of this.

Observing at Gemini

Queue mode: (opening the time domain)

You submit your observations, we observe for you You can look over our shoulders by *Eavesdropping*!

Classical mode: (allowing real-time decision)

You visit the observatory and conduct your observations (You can also come and just run the queue)

First 'BOGO', Allison Noble (U.Toronto), at Gemini South

Priority Visitor Observing: you can come for as long as you want and choose the best time for your observations!

Bring One, Get One: If you come observing and bring your student, we will subsidize her/him with US\$2,000

You have access to all of this, too.

Gemini Subaru Exchange Time

29 papers Subaru users on Gemini since 2009 7 already in 2016 T-Recs and Michelle most popular instruments

37 papers from Gemini users on Subaru since 2009 4 so far from 2016 Dominated by Suprime-Cam

2017A

6 nights of Gemini time on Subaru8.5 nights of Subaru time on GeminiSubaru users used 1 night of Fast Turnaround in 2016B

Gemini Subaru Exchange Science

The redshifted selected sample of long gamma-ray burst host galaxies: the complete metallicity measurements at $z \le 0.41^{*\dagger}$

Yuu NIINO¹, Kentaro Aoki², Tetsuya Hashimoto¹, Takashi Hattori², Shogo Ishikawa³, Nobunari Kashikawa¹, George Kosugi¹, Masafusa ONOUE³, Jun Toshikawa¹, and Kiyoto Yabe⁴

Table 3. Observations of the GRB host galaxies						
target host galaxy	instrument	grating + filter	N&S [†]	Integration [sec]		
GRB 060614	GMOS-S	B600	No	1000 imes 6		
	GMOS-S	R400 + OG515	No	1200×8		
GRB 090417B	GMOS-N	R831 + RG610	Yes	$1320^{\ddagger} \times 2$		
GRB 130427A	GMOS-N	R831 + RG610	Yes	$1320^{\ddagger} \times 2$		
GRB 130427A ^{††}	FOCAS	300B + Y47	No	1200 × 8		
GRB 111225A	FOCAS	U (imaging)	No	360 × 5		
	FOCAS	B (imaging)	No	120×5		
	FOCAS	V (imaging)	No	120×5		
	FOCAS	R (imaging)	No	120×5		
	FOCAS	I (imaging)	No	120×5		

Gemini Science

Source of a recurring Fast Radio Burst (FRB) object identified as a distant (Z~0.2) dwarf galaxy through GMOS follow-up imaging and spectroscopy.

Used Director's discretionary time.

Tendulkar et al., 2017

Gemini Publications

~20% use Adaptive Optics

Gemini Instruments

Site	Instrument		FoV, Mode, Resolution	AO Support
Gemini-N	GMOS-N	360-940 nm	img 5.5'x5.5' LS, MOS, IFS (5"x7") R:600-4,000	(ALTAIR)
up to 2018	NIRI	1-5 μm	img 20"x20" - 120"x120"	ALTAIR
	NIFS	950-2400 nm	IFS (3"x3") R:5000	TAIR
	GNIRS	1-5 μm	LS R:1,800-18,000 (+img)	AIR
Gemini-S	GMOS-S	360-940 nm	img 5.5'x5.5' LS, MOS	(GeMS)
	GSAOI	950-2400 nm	img 85"x85" . InSu	GeMS
	FLAMINGOS-2	950-2400 nm	tegl R: 1,200-3,000	(GeMS)
GN in 2018	GPI	900-2400 nn C	$+12$ Contrast: 10^7 at 0.4 "	XAO
~2018	GHOST (GS)	360-1000 nm	2 IFUs in 7' Ø R: 50,000 + 75,000	(None)
~2022	Gen4#3 (GS)	Visible + NIR	aimed to be an LSST follow-up instrument	
Visitor INS	TEXES (GN)	5-25 µm	LS R: 4,000 - 85,000	AQ
	DSSI (GN/GS)	400-1000 nm	Dual EMCCD imaging, 20 mas resol	S
	GRACES (GN)	~500-1000 nm	see CFHT/ESPaDOnS	onts
	Phoenix (GS)	1-5 μm	LS R: 50,000 1 1 DS + r11 M	AO
2016	POLISH2 (GN)	optical	histical Insu	no AO
2017	HIPPI (TBC)	optical 🗸	12C1+081C 11	no AO
2018	IGRINS (GS)	H+K	Ctralos	no AO
2018 (TBC)	TIKI (GS)	mid-IR	h, mid-infrared planet imager	own XAO
2019 (TBC)	MAROON-X (TBC)	500-1000 nm	precision radial velocity (~1 m/s)	no AO
2020 (TBC)	G-IRMOS (GS)	IR	deployable IFUs	GeMS

Fraction of Time by Instrument: Gemini North

GMOS-N CCDs

AN AN AN AN EXINT GEMINT GEMIN

MINI GEMINI GEMINI GE

GHOST

We are into the build phase!

IFUs

 \odot

GHOST Estimated Performance

GHOST Schedule

Milestone	Date (Previous)	
Critical Design Review	December 2015	
Delta Critical Design	February 2016	
Review		
Final Design Review	May (April Mar) 2016	
Start Build Phase	May (Apr) 2016	
Start Test Phase	Nov (Aug) 2017	
Delivery to Gemini	Apr (Jan) 2018	
Start Commissioning	Jul (May) 2018	
End Commissioning	2018B [Sep (Aug) 2018]	

Does not include three months of schedule contingency.

GS Laser at Toptica

and a second second second second second realing accurate realing accurate accurate

Gemini's Next Instrument: Gen4#3

A moderate resolution, broad bandwidth spectrograph

Baseline parameters

R ~4000 λ ~400-1600nm Highly efficient Throughput Acquisition and observing overhead On-sky by start of LSST main survey (2023)

GIFS Studies Enhancements

Extension to 2.5µm and 369nm IFU Multi-object Simultaneous imaging Higher resolution Very long slit mode for planetary transit observations Spectropolarimetry EMCCD

RfP Completed. Hoping to start this quarter!

Hope to see you on the Gemini Bus!

Fast Turnaround Long and Large Queue and Classical Both hemispheres Multi-Instrument New capabilities

どうもありがとうございました。

Outer .