FastSound project: A galaxy redshift survey at z~1.4 with Subaru/FMOS

Motonari Tonegawa (KIAS research fellow) and FastSound team

> 2017/01/10 Subaru Users Meeting FY2016 @ NAOJ

Dark energy

- Accelerating expansion of the Universe
 - Gravitational force is attractive
 - Need the repulsive force
 - Dark energy $p = w\rho$ (w < -1/3) ?
 - Modified gravity ?

- Growth rate of structure *f* is a discriminant of gravity theories
 - Redshift space distortion (RSD) gives measurement of *f*

Redshift Space Distortion (RSD)

- We measure the distance of galaxies from redshifts.
 - redshift = cosmological redshift + Doppler effect (galaxy velocity)
- In redshift space, the galaxy clustering is distorted by the peculiar velocity of galaxies.

Redshift Space Distortion (RSD)

$$P^{\text{obs}}(k,\mu) = \left(1 + \frac{f\mu^2}{b}\right)^2 P^{\text{real}}(k) \quad (\text{Kaiser formula})$$

• RSD gives measurement of *f* as an anisotropy parameter
• *f* is predicted by gravity theories:

$$f = \frac{d \ln \delta}{d \ln a}$$

$$F^{(k)} = \langle |\delta(k)| \rangle^2$$

$$\delta(k) = \frac{1}{V} \int \delta(x) e^{-ikx} d^3x$$

$$\delta(x) = \frac{\rho(x) - \rho}{\bar{\rho}}$$
b: galaxy bias a: scale factor $\mu = k_{||} / |k|$
 $k = 2\pi/x$

Measurement of f = test of gravity theories on cosmological scale !

Past measurements of RSD

- RSD has been detected up to $z\sim0.8$
- All survey has been in optical bands
- FastSound: The first RSD survey at z>1
 - Use FMOS <u>near-infrared</u> spectrograph
 - FAST = FMOS Ankoku Sekai Tansa (暗黒世界探査 meaning "dark universe survey" in Japanese), or FMOS Acceleration Sampling Test
 - SOUND = Subaru Observation Understanding Nature of Dark energy

DESI collaboration (2016)

	-		
\mathbf{Z}	$f\sigma_8$	survey	reference
0.067	0.42 ± 0.06	6dFGRS	[80]
0.17	0.51 ± 0.06	2dFGRS	[90]
0.22	0.42 ± 0.07	WiggleZ	[82]
0.25	0.35 ± 0.06	SDSS LRG	[77]
0.37	0.46 ± 0.04	SDSS LRG	[77]
0.41	0.45 ± 0.04	WiggleZ	[82]
0.57	0.45 ± 0.03	BOSS CMASS	[85]
0.6	0.43 ± 0.04	WiggleZ	[82]
0.77	0.49 ± 0.18	VVDS	[91]
0.78	0.38 ± 0.04	WiggleZ	[82]
0.80	0.47 ± 0.08	VIPERS	[92]
1.4	0.48 ± 0.12	FastSound	[93]

FastSound with Subaru/FMOS

- Fiber Multi-Object Spectrograph
 - 400 fibers in 30' diameter
 - NIR spectrograph
 - Low-resolution(LR) : 0.9 1.8 um, R~500
 - High-resolution(HR) : R~2200
 - FastSound uses HR mode
 - 1.43--1.68 um
 - Η α λ 6563 @ z ~ 1.4
- OH mask suppression by the mask mirror
- NIR observation = reach z>1!

Observations

- Observation
 - March. 2012 July. 2014
- Target selection
 - Use CFHTLS Wide 5 bands (u*g'r'l'z)
 - Based on redshift and H $\alpha\,$ flux estimates using LePhare
- Survey field
 - W1: 10 FoVs (2deg²)
 - W2: 39 FoVs (8deg²)
 - W3: 54 FoVs (11deg²)
 - W4: 18 FoVs (4deg²)

Data Reduction / Line detection

Suppression of false detections

- False detection rate estimates
 - Line search on "inverted" image
 - 4.5% (S/N>4.5), 9.2% (S/N>4.0)

- We have typically only 1 emission line, because of limited wavelength coverage: is it really Ha line ?
- Using multiple line objects, the line confusion rate is estimated (Okada et al. 2015).
- [OIII] λ 5007 @ z~2 is the largest contamination (4.4%).
- Used for correction of the power spectrum

Emission line statistics

• Emission lines : ~4,000 (S/N>4.5) ~5,000 (S/N>4.0)

Emission lines	S/N > 4.5	S/N > 4.0
W1	239 (14)	318 (27)
W2	1535 (75)	1950 (185)
W3	1528 (98)	1929 (224)
W4	436 (26)	557 (75)
Total	3769 (170)	4797 (441)

() : number of detections in inverted frames

https://www.youtube.com/watch?v=RAiPZ_oUPI4

2D correlation function

Paper IV, Okumura et al. (2015)

- About 3,000 conservatively selected galaxies (S/N > 4.5)
- Landy-Szaley estimator

$$\xi = \frac{DD - 2DR + RR}{RR}$$

- Fiber allocation failure corrected
- Decrease of detection rate near OH mask corrected

Correlation function

• Legendre expansion $\xi_l = \frac{2l+1}{2} \int_{-1}^{1} \xi(r,\mu) L_l(\mu) d\mu$

 $L_l(\mu)$: Legendre polynomials

- Model fitting
 - Use $8 < r < 80h^{-1}$ Mpc
 - Kaiser model + nonlinear P_m
 - Two parameters $(f\sigma_8, b\sigma_8)$
 - False detection and line confusion effects considered
- RSD is seen!

quadrupole component (I=2, RSD)

$f\sigma_8$ measurement at z~1.4

- 4.2 σ detection of RSD
- First significant detection of RSD at z>1
- \bullet Consistent with $\Lambda\,\text{CDM}$ within 1 σ

		$f\sigma_8$
-	FastSound	0.482 ± 0.116
	ΛCDM	0.392

Constraint on gravity theories

- Covariant Galileon model can be distinguished.
- High-z galaxy surveys, combined with the low-z constraints, is useful to distinguish gravity theories, independently of CMB experiments.

Summary

- FastSound project: the first RSD survey beyond z > 1
- ~5,000 redshifts of star-forming galaxies were collected by Subaru/FMOS
- RSD is detected at z~1.4 for the first time and the constraint on the growth rate $f\sigma_8 = 0.482 \pm 0.016$ is obtained. This is consistent with the prediction of the Λ CDM model.
- Measuring $f\sigma_8$ at various redshifts can be useful to distinguish modified gravity theories, without relying on CMB experiments.

Comparison with CMB results

 FastSound and almost all results from RSD are consistent with CMB results from WMAP and Planck

FastSound project

- FastSound : cosmological redshift survey using Subaru/FMOS
 - ~25 deg², ~5,000 redshifts of H α galaxies
 - 35 nights observation from Mar. 2012 to Jul. 2014
- Scientific Goal
 - Reveal 3D distribution of H α Galaxies at z=1.2-1.6
 - Detect Redshift Space Distortion (RSD) beyond z=1
 - Measure $f\sigma_8$ from RSD \rightarrow test of General Relativity

Dark energy vs. Modified Gravity

- \bullet Λ on right-hand side or left-hand side?
 - right: the energy of the Universe ("dark energy")
 - left: physical law of gravity ("modified gravity")

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu} + \Lambda g_{\mu\nu}$$

• Observational approaches are different

Target Selection

- \bullet Redshift and H $\alpha\,$ flux estimates using LePhare
 - CFHTLS optical 5 bands (u*, g', r,' i', z')
 - Empirical templates for redshift estimates $z_{\rm ph}$
 - Population synthesis model (PEGASE2) for Ha flux estimates
- Selection criteria
 - $1.18 < z_{\rm ph} < 1.54$
 - H α flux > 1.0 x 10⁻¹⁶ [erg/cm²/s]
 - 20.0 < z' mag < 23.0
 - g'-r' < 0.55

↑ True lines

↓ Spurious objects

Varying σ_{v}

- We also allow σ_v to vary, for a check.
- The best-fit value on $f\sigma_8$ does not change significantly
- $\sigma_v = 0$ is preferred: our spectroscopic targets are likely to be central galaxies, residing in small haloes

	$f\sigma_8$
FastSound	0.482 ± 0.116
σ_v varied	$0.494\substack{+0.126\\-0.120}$