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Outline

* Introduction
* Importance of Cepheids to study the Galaxy

 Qur goals and observations

 What we would like to investigate with our Subaru/IRCS
spectroscopic data.

 Analysis of IRCS H-band spectra for metallicity

* Establishing the analysis methods and tools to measure
[Fe/H] and other parameters with near-IR spectra

* Results for target Cepheids
* [Fe/H] of the targets and the implications

e Summary and Future prospects




Introduction




Classical Cepheids as tracers

* P-L relation — distance (accurate to 10% for each star)

* Ages, kinematics and chemical abundances can be
accurately determined, thus working as good tracers.
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[Fe/H]

Cepheids as chemical tracers

* Genovali et al. (2013—2015), da Silva et al. (2016)

* Clear and tight metallicity gradient traced by >400
Cepheids and almost no variation in [alpha/Fe]
(Genovali et al. 2015), but significant slopes for
heutron-capture elements (da Sllva et aI 2016)
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Our goals and observations
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IRSF survey of the Galactic Center

* We discovered 4 classical Cepheids (Matsunaga et al.
2011, 2013, 2015) along with other variable stars
(eg >500 Miras).

*IRSF 1.4-m telescope and SIRIUS JHKs-band camera
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The Nuclear Stellar Disk

* A disk-like system where
stars coexist with gas/dust

(Central Molecular Zone)
* Young stars exist in contrast £
to the Bulge dominated by ~ “ost |/ 77— || 3
:';:}::::.‘::f‘t:{:vg:r‘:::v ’:..V:S:g:r.,‘:::g:r:‘:iv..' :::
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Stellar populations in the Nuclear Disk

Current star formation
Eg) Sgr B

Massive stars (and clusters)
Eg) Arches, Quintuplet

Old stars?

representated by
RGB stars

The classical Cepheids

E—+—H0

Current 1Myr  10Myr 100 Myr

OH/IR stars, SiO masers

4

\hf

1 Gyr 10 Gyr

Our target Cepheids are the only objects aged ~25 Myr
which have been identified in this region.



Goals of IRCS spectroscopy

* Kinematics of the Cepheids

* Confirm their membership to the Nuclear Stellar
Disk by comparing radial velocities with those of
gas and other stars.

* (Proper motions from images separated by a few
years would give a stronger result.)
*Chemical abundances of the Cepheids

e Study chemical evolution of the Nuclear Stellar
Disk and gas supply to the Central Molecular Zone



Observations in 2010—2012

* Subaru/IRCS + AO188
* H- (or K-) band
* R=A/AA~20,000

* 4 Cepheids reported in
Matsunaga et al. (2011,
2013, 2015).

* We also observed 10
standard stars and 2
well-studied Cepheids

(0 Cep and X Cyg).
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Kinematics of the Cepheids

 Matsunaga et al. (2015, ApJ, 799, 46)

* Radial velocities (V| sg) Consistent with the rotation of
the Nuclear Disk.

Cepheid (b)

Cepheid (a) M1 KM/S | copneig (q)
+129 km/s | SR —11 km/s

12pc=5 ™
—>

5 arcmin corresponds to a projected
distance of 12 pc at 8 kpc.

Cepheid (c)
—80 km/s




In context of chemical evolution

* Chemistry of the targes may tell us the origin(s) of gas in
the Central Molecular Zone.

* 3 possible origins
* Gas in the inner Disk falling through the Bar—metal-rich
* Gas being lost by old evolved stars in the Bulge—around solar
* (High-velocity) clouds in the Halo—metal-poor
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Analysis of IRCS H-band
spectra for metallicity



Chemical analysis with H-
band high-resolution specrtra

* Still state of the art

* line information (identification, strengths)
* how to derive various parameters (T, log g, metals)

* APOGEE (Majewski et al. 2015, and a lot more)

* Providing many fundamental results to enable the
accurate chemical analysis with H-band spectra in the
recent couple of years.

e Similar resolution to our H-band data, but slightly
narrower wavelength coverage.

e Our analysis has been developed independently.



Overview: Steps

* For metallicity standard stars

* Reproducing the known metallicities of 10 standards to
verify analysis tool and line information

* Finding a temperature indicator (line-depth ratio method)

* For standard Cepheids

* Reproducing the known temperatures and metallicities of
2 Cepheids (0 Cep and X Cyg) to check the methods

* For 4 target Cepheids
* Deriving the temperatures and metallicities



Tools and basic data

*SPTOOL (by Y. Takeda)

« SPSHOW - synthesizing and displaying model spectra
* MPFIT - measuring abundances

* We combined SPTOOL tasks to effeciently determine
microtubulence and metallicity.

e Stellar atmosphere models (by Kurucz)

*Line lists
* Atomic : Melendez & Barbuy (1999)
* Molecular : Kurucz (http://kurucz.harvard.edu/)

* including wavelengths, excitation potentials, and
strengths



http://kurucz.harvard.edu/

[Fe/H] measurements for
standards

* We selected 95 (relatively unblended) Fe | lines.

* Microturbulences are determined by balancing between
[Fe/H] values from strong and weak lines.

* Derived [Fe/H], standard errors of 0.03 dex, agree very well
with literature values.
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Line-depth ratios (LDRSs)

as a thermometer

* Fukue et al. (2015, ApJ, 812, 64)

 Combinations of lines with different excitation potential are
sensitive to stellar temperature.
* Low-excitation potential ( < 4eV ) - relatively insensitive to T variation
* High-excitation potential ( 5—7 eV ) - strong dependency on T

* Based on IRCS spectra of 8 standard stars with known T, we
derived 9 LDR-T relations (for the first time in H-band).

* Because of the very large foreground extinction for our targets, this
method is crucial to determine their temperatures.
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Analysis for standard Cepheids

* T+ and [Fe/H] of well-studied Cepheids, d Cep and X Cyg
* LDR method gives temperatures consistent with the observed phases.

A typical gravity for Cepheids with P=20 days, log g=1.3+0.5 dex, is
assumed.

* Derived [Fe/H] also agrees with literature values within 0.05 dex.
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Results for target Cepheids
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Data to use for the targets
* Subaru/IRCS + A0188 mm..

* H-band GCC-a 2012/07/26 300 sec x 14
* R=A/AA~20,000 GCC-b 2012/07/26 H 300secx12 55
* Relatively higher-S/N GCC-c 2012/07/27 H 300secx12 35
spectra takend in 2012 GCCd 2012/07/27 H 300secX8 36

are used for chemical
analysis (but S/N=35~55)
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T and [Fe/H] of the targets

* Although the accuracy is limited by low S/N (35—55),

T ..and [Fe/H] are reasonably constrained.
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Important—this result is preliminary, in particular, for
the case of GCC-c, [Fe/H]~+0.5 dex. In such a high-
metal regime, T from LDR can be altered due to
metallicity effect on the LDR method.



Comparison with literature

* All the previous measurements indicates [Fe/H] around
the solar, -0.2~+0.2 dex, regardless of ages of tracers.

» 3 Cepheids have [Fe/H] similar to the other tracers, while
1 (GCC-c) have a significantly higher [Fe/H], +0.5 dex.
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Metallicities of Gas from the inner Disk?

Cepheids in the innermost part of the
relevant SyStems Disk, R;c=4~6kpc: <[Fe/H]>= +0.3
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Most stars including 3 Cepheids ]
seem to favor <[Fe/H]> of stars in _ ]
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Implications and drawbacks

* Implications
* Mass-loss gas from stars in the Bulge may be the main

source of gas and star formation in the Nuclear Stellar Disk
(or the Central Molecular Zone) (see also Cunha+2007).

* One of our Cepheids, GCC-c, has a significantly higher
[Fe/H] than other stars. [Fe/H]=+0.5 favors gas fueling
from the inner Disk.

 Drawbacks

* The S/N of our spectra are low, at around the lower limit of
quality required for reasonable [Fe/H] measurements.

* The number of stars and [Fe/H] measurements are still
limited both for the NSD and for the inner Disk.




Summary

*|RCS results of velocities and [Fe/H] of 4
Cepheids in the Nuclear Stellar Disk

*We have developed chemical abundance
analysis for H-band spectra.

* Line-depth ratio (LDR) method for T (Fukue et al. 2015)
* 95 Fe | lines to use for [Fe/H]

* [Fe/H] of Cepheids in the Nuclear Stellar Disk

* 3 Cepheids consistent with enrichment by gas lost by low-
mass evolved stars in the Bulge, while 1 may give the first
evidence of metal-rich gas fallen from the inner Disk.



Future prospects

* Abundances of other elements would give further
insights into chemical evolution.

* More Cepheids are being discovered in recent surveys
(eg. KISOGP; VVWW—Dekany et al. 2015ab).

* Other near-IR spectrographs, eg WINERED and GIANO,
will be also useful to make siilgeasurements.

gas /
SR /
L B
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Targets in our S16A
run (2 nights) which
are located in

uncultivated regions
of the Galactic disk.
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Normalized Flux
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Comparison with other Cepheids
in the Disk

e 3 Cepheids with [Fe/H] ~ 0.1—0.2 dex are not so metal-rich

as several Cepheids in the innermost part of the Disk, but

the number of the Cepheids in the inner Disk is very limited.
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Fig.6. Histogram of our metallicities in black with a mean of
[Fe/H] =0.11 and a standard deviation of 0.15. The red histogram shows
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(0°,—1°) in magenta, the field at (0°, —1.75%) in green (Rich et al. 2012),
and the field at (1°, —2.65°) in blue (Rich et al. 2012).
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Estimating radial velocities

 Comparing Observed spectra are with Combined
spectra (=Synthesized X Telluric)

* Finding velocities which give the best matches
between the Observed and Combined spectra

~ I Synthesized spectrum (using Kurucz’s ATLAS9/SYNTHE)

i Telluric spectrum (from an A-type standard star)

Normalized Flux (+const)
N
o

Combined spectrum (=Synthetic X Telluric)

-
o

Observed spectrum

0.0 1 I 1 1 | | I 1 1 | | l l 1 1

16000 16050 16100
Wavelength



Light curve and velocity
curve templates

* H-band light and velocity Iy
curves of 11 Cepheids with
P~20 days are conbined. 5 G5

* Data compiled by
Groenewegen (2011)

* These templates enable us el L L
to predict the velocity 0-5} Radial velocity curve. <\ —
curve from the light curve. 4Bl
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(Pulsation-corrected) mean velocities

* Typical uncertainties are roughly *=5km/s.
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